Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
In the last decades, a number of developments have made global optimization of large multi-dimensional design option spaces possible. Such developments include the increase in computing power, emergence of sophisticated optimization algorithms, and new techniques for the derivation of computationally highly efficient meta-models. Along with their promise, such developments also involve a number of potential drawbacks. For one thing, meta-models occasionally fail to capture the behaviour of "non-conventional" and complex designs. Another critical problem pertains to the potentially opaque nature of large-scale global optimization exercises, which make them less amenable to provision of intuitively graspable support in a naturally iterative design process. In this context, this research explores the potential of a novel approach toward iterative global optimization of locally optimized attribute clusters of building design solutions.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.