Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
In knot theory, diagrams of a given canonical genus can be described by means of a finite number of patterns ("generators"). This book presents a self-contained account of the canonical genus: the genus of knot diagrams. The author explores recent research on the combinatorial theory of knots and supplies proofs for a number of theorems. He gives a detailed structure theorem for canonical Seifert surfaces of a given genus and covers applications, such as the braid index of alternating knots and hyperbolic volume.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.