Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This book offers a systematic presentation of persymmetric adaptive detection, including detector derivations and the definition of key concepts, followed by detailed discussion relating to theoretical underpinnings, design methodology, design considerations and techniques enabling its practical implementation.
This book provides a comprehensive and systematic framework for the design of adaptive architectures, which take advantage of the available a priori information to enhance the detection performance. Moreover, this framework also provides guidelines to develop decision schemes capable of estimating the target position within the range bin. To this end, the readers are driven step-by-step towards those aspects that have to be accounted for at the design stage, starting from the exploitation of system and/or environment information up to the use of target energy leakage (energy spillover), which allows inferring on the target position within the range cell under test.In addition to design issues, this book presents an extensive number of illustrative examples based upon both simulated and real-recorded data. Moreover, the performance analysis is enriched by considerations about the trade-off between performances and computational requirements.Finally, this book could be a valuable resource for PhD students, researchers, professors, and, more generally, engineers working on statistical signal processing and its applications to radar systems.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.