We a good story
Quick delivery in the UK

Books by Daniel W. Stroock

Filter
Filter
Sort bySort Popular
  • by Daniel W. Stroock
    £26.49

    This book is based on a course given at Massachusetts Institute of Technology. It is intended to be a reasonably self-contained introduction to stochastic analytic techniques that can be used in the study of certain problems. The central theme is the theory of diffusions. In order to emphasize the intuitive aspects of probabilistic techniques, diffusion theory is presented as a natural generalization of the flow generated by a vector field. Essential to the development of this idea is the introduction of martingales and the formulation of diffusion theory in terms of martingales. The book will make valuable reading for advanced students in probability theory and analysis and will be welcomed as a concise account of the subject by research workers in these fields.

  • by Daniel W. Stroock
    £64.49

    Kiyosi Ito's greatest contribution to probability theory may be his introduction of stochastic differential equations to explain the Kolmogorov-Feller theory of Markov processes. Starting with the geometric ideas that guided him, this book gives an account of Ito's program. The modern theory of Markov processes was initiated by A. N. Kolmogorov. However, Kolmogorov's approach was too analytic to reveal the probabilistic foundations on which it rests. In particular, it hides the central role played by the simplest Markov processes: those with independent, identically distributed increments. To remedy this defect, Ito interpreted Kolmogorov's famous forward equation as an equation that describes the integral curve of a vector field on the space of probability measures. Thus, in order to show how Ito's thinking leads to his theory of stochastic integral equations, Stroock begins with an account of integral curves on the space of probability measures and then arrives at stochastic integral equations when he moves to a pathspace setting. In the first half of the book, everything is done in the context of general independent increment processes and without explicit use of Ito's stochastic integral calculus. In the second half, the author provides a systematic development of Ito's theory of stochastic integration: first for Brownian motion and then for continuous martingales. The final chapter presents Stratonovich's variation on Ito's theme and ends with an application to the characterization of the paths on which a diffusion is supported. The book should be accessible to readers who have mastered the essentials of modern probability theory and should provide such readers with a reasonably thorough introduction to continuous-time, stochastic processes.

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.