We a good story
Quick delivery in the UK

Books by Dr Zacharias Voulgaris

Filter
Filter
Sort bySort Popular
  • by Dr Zacharias Voulgaris
    £38.99

  • by Dr Zacharias Voulgaris
    £31.99

  • - Artificial Intelligence Frameworks and Functionality for Deep Learning, Optimization, and Beyond
    by Dr Zacharias Voulgaris
    £43.49

    Master the approaches and principles of Artificial Intelligence (AI) algorithms, and apply them to Data Science projects with Python and Julia code.Aspiring and practicing Data Science and AI professionals, along with Python and Julia programmers, will practice numerous AI algorithms and develop a more holistic understanding of the field of AI, and will learn when to use each framework to tackle projects in our increasingly complex world.The first two chapters introduce the field, with Chapter 1 surveying Deep Learning models and Chapter 2 providing an overview of algorithms beyond Deep Learning, including Optimization, Fuzzy Logic, and Artificial Creativity.The next chapters focus on AI frameworks; they contain data and Python and Julia code in a provided Docker, so you can practice. Chapter 3 covers Apache's MXNet, Chapter 4 covers TensorFlow, and Chapter 5 investigates Keras. After covering these Deep Learning frameworks, we explore a series of optimization frameworks, with Chapter 6 covering Particle Swarm Optimization (PSO), Chapter 7 on Genetic Algorithms (GAs), and Chapter 8 discussing Simulated Annealing (SA).Chapter 9 begins our exploration of advanced AI methods, by covering Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Chapter 10 discusses optimization ensembles and how they can add value to the Data Science pipeline.Chapter 11 contains several alternative AI frameworks including Extreme Learning Machines (ELMs), Capsule Networks (CapsNets), and Fuzzy Inference Systems (FIS).Chapter 12 covers other considerations complementary to the AI topics covered, including Big Data concepts, Data Science specialization areas, and useful data resources to experiment on.A comprehensive glossary is included, as well as a series of appendices covering Transfer Learning, Reinforcement Learning, Autoencoder Systems, and Generative Adversarial Networks. There is also an appendix on the business aspects of AI in data science projects, and an appendix on how to use the Docker image to access the book's data and code.The field of AI is vast, and can be overwhelming for the newcomer to approach. This book will arm you with a solid understanding of the field, plus inspire you to explore further.

  • - Mindset, Methodologies & Misconceptions
    by Dr Zacharias Voulgaris
    £35.49

    Master the concepts and strategies underlying success and progress in data science.From the author of the bestsellers, Data Scientist and Julia for Data Science, this book covers four foundational areas of data science. The first area is the data science pipeline including methodologies and the data scientist's toolbox. The second are essential practices needed in understanding the data including questions and hypotheses. The third are pitfalls to avoid in the data science process. The fourth is an awareness of future trends and how modern technologies like Artificial Intelligence (AI) fit into the data science framework.The following chapters cover these four foundational areas: Chapter 1 - What Is Data Science? Chapter 2 - The Data Science Pipeline Chapter 3 - Data Science Methodologies Chapter 4 - The Data Scientist's Toolbox Chapter 5 - Questions to Ask and the Hypotheses They Are Based On Chapter 6 - Data Science Experiments and Evaluation of Their Results Chapter 7 - Sensitivity Analysis of Experiment Conclusions Chapter 8 - Programming Bugs Chapter 9 - Mistakes Through the Data Science Process Chapter 10 - Dealing with Bugs and Mistakes Effectively and Efficiently Chapter 11 - The Role of Heuristics in Data Science Chapter 12 - The Role of AI in Data Science Chapter 13 - Data Science Ethics Chapter 14 - Future Trends and How to Remain RelevantTargeted towards data science learners of all levels, this book aims to help the reader go beyond data science techniques and obtain a more holistic and deeper understanding of what data science entails. With a focus on the problems data science tries to solve, this book challenges the reader to become a self-sufficient player in the field.

  • by Dr Zacharias Voulgaris
    £35.49

    After covering the importance of Julia to the data science community and several essential data science principles, we start with the basics including how to install Julia and its powerful libraries. Many examples are provided as we illustrate how to leverage each Julia command, dataset, and function.Specialized script packages are introduced and described. Hands-on problems representative of those commonly encountered throughout the data science pipeline are provided, and we guide you in the use of Julia in solving them using published datasets. Many of these scenarios make use of existing packages and built-in functions, as we cover: An overview of the data science pipeline along with an example illustrating the key points, implemented in Julia Options for Julia IDEs Programming structures and functions Engineering tasks, such as importing, cleaning, formatting and storing data, as well as performing data preprocessing Data visualization and some simple yet powerful statistics for data exploration purposes Dimensionality reduction and feature evaluation Machine learning methods, ranging from unsupervised (different types of clustering) to supervised ones (decision trees, random forests, basic neural networks, regression trees, and Extreme Learning Machines) Graph analysis including pinpointing the connections among the various entities and how they can be mined for useful insights.Each chapter concludes with a series of questions and exercises to reinforce what you learned. The last chapter of the book will guide you in creating a data science application from scratch using Julia.

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.