We a good story
Quick delivery in the UK

Books by Ferid Bashirov

Filter
Filter
Sort bySort Popular
  • by Ferid Bashirov
    £59.99

    Spectroscopic Techniques and Hindered Molecular Motion presents a united, theoretical approach to studying classical local thermal motion of small molecules and molecular fragments in crystals by spectroscopic techniques. Mono- and polycrystalline case studies demonstrate performance validity. The book focuses on small molecules and molecular fragments, such as N2, HCl, CO2, CH4, H2O, NH4, BeF4, NH3, CH2, CH3, C6H6, SF6, and other symmetrical atomic formations, which exhibit local hindered motion in molecular condensed media: molecular and ionic crystals, molecular liquids, liquid crystals, polymeric solids, and biological objects. It reviews the state of studying the hindered molecular motion (HMM) phenomenon and the experimental works on the basis of the latest theoretical research.Case StudiesPhysical models of hindered molecular motionGeneral solution of the stochastic problem for the hindered molecular motion in crystalsFormulae of the angular autocorrelation function symmetrized on the crystallographic point symmetry groups Formulae of the spectral line shapes concerning the dielectric, infrared, Raman, nuclear magnetic relaxation, and neutron scattering spectroscopy in the presence of the hindered molecular motionExperimental probation of the theoretical outcomesProton relaxation in three-atomic molecular fragments undergoing axial symmetry hindered motion Structural distortion in the ordered phase of crystalline ammonium chlorideOrganic compounds, polymers, pharmaceutical products, and biological systems consist of the molecular fragments, which possess rotational or conformational degrees of freedom or an atomic exchange within the fragme

  • by Ferid Bashirov
    £164.49

    The theory of hindered motions of small molecules and molecular fragments in crystals and liquids allows one to obtain detailed knowledge of both the crystal structure and the dynamical behavior of molecules. Application of the theory to describe such phenomena as NMR relaxation rates and spectral line broadening expands the power of many spectroscopy techniques. The author compares this theoretical approach with recent experimental results. Specific topics covered include the extended angular jump model, angular autocorrelation functions, dielectric, optical and neutron scattering spectroscopy applications, and nuclear magnetic resonance spin-lattice relaxation applications.

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.