Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This book provides the first coherent account of the area of analysis that involves the Heisenberg group, quantization, the Weyl calculus, the metaplectic representation, wave packets, and related concepts. This circle of ideas comes principally from mathematical physics, partial differential equations, and Fourier analysis, and it illuminates all these subjects. The principal features of the book are as follows: a thorough treatment of the representations of the Heisenberg group, their associated integral transforms, and the metaplectic representation; an exposition of the Weyl calculus of pseudodifferential operators, with emphasis on ideas coming from harmonic analysis and physics; a discussion of wave packet transforms and their applications; and a new development of Howe's theory of the oscillator semigroup.
This book presents the essentials of harmonic analysis on locally compact groups in a concise and accessible form. The text provides necessary background on Banach algebras and spectral theory, develops the theory of analysis on Abelian groups and compact groups, examines the theory of induced representations, and explores the theory of representations of non-Abelian, non-compact groups. This second edition adds material on representations of the discrete Heisenberg group, coverage of von Neumann algebras and Wiener¿s theorem, and discussion of SU(2), SO(3), and SO(4) using quaternions.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.