Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This book introduces iterative learning control (ILC) and its applications to the new equations such as fractional order equations, impulsive equations, delay equations, and multi-agent systems, which have not been presented in other books on conventional fields. ILC is an important branch of intelligent control, which is applicable to robotics, process control, and biological systems. The fractional version of ILC updating laws and formation control are presented in this book. ILC design for impulsive equations and inclusions are also established. The broad variety of achieved results with rigorous proofs and many numerical examples make this book unique.This book is useful for graduate students studying ILC involving fractional derivatives and impulsive conditions as well as for researchers working in pure and applied mathematics, physics, mechanics, engineering, biology, and related disciplines.
This book extends classical Hermite-Hadamard type inequalities to the fractional case via establishing fractional integral identities, and discusses Riemann-Liouville and Hadamard integrals, respectively, by various convex functions. Illustrating theoretical results via applications in special means of real numbers, it is an essential reference for applied mathematicians and engineers working with fractional calculus. ContentsIntroductionPreliminariesFractional integral identitiesHermite-Hadamard inequalities involving Riemann-Liouville fractional integralsHermite-Hadamard inequalities involving Hadamard fractional integrals
This book presents fractional difference, integral, differential, evolution equations and inclusions, and discusses existence and asymptotic behavior of their solutions. Controllability and relaxed control results are obtained. Combining rigorous deduction with abundant examples, it is of interest to nonlinear science researchers using fractional equations as a tool, and physicists, mechanics researchers and engineers studying relevant topics. ContentsFractional Difference EquationsFractional Integral EquationsFractional Differential EquationsFractional Evolution Equations: ContinuedFractional Differential Inclusions
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.