Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
Heavy ion collision experiments recreating the quark-gluon plasma that filled the microseconds-old universe have established that it is a nearly perfect liquid that flows with such minimal dissipation that it cannot be seen as made of particles. String theory provides a powerful toolbox for studying matter with such properties. This book provides a comprehensive introduction to gauge/string duality and its applications to the study of the thermal and transport properties of quark-gluon plasma, the dynamics of how it forms, the hydrodynamics of how it flows, and its response to probes including jets and quarkonium mesons. Calculations are discussed in the context of data from RHIC and LHC and results from finite temperature lattice QCD. The book is an ideal reference for students and researchers in string theory, quantum field theory, quantum many-body physics, heavy ion physics and lattice QCD.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.