Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
Der vorliegende erste Teil eines zweisemestrigen Grundkurses in Analysis wendet sich an Studierende im ersten oder zweiten Semester eines Bachelor-Studiums in Mathematik, Physik, Naturwissenschaften oder Informationstechnologie und ganz besonders auch an Lehramtskandidaten. Schwerpunkte des ersten Bandes bilden der Grenzwertbegriff und die Differential- und Integralrechnung in einer Veränderlichen. Im zweiten Band wird dann die Differentialrechnung in mehreren Veränderlichen und das Lebesgue-Integral behandelt.Ausgangspunkt ist das mitgebrachte Schulwissen. Kurze Einführungen greifen dieses Vorwissen auf, motivieren oder fassen wichtige Voraussetzungen zusammen. Im Zentrum des Grundkurses geht es gleichermaßen um Rechenmethoden, die Kunst des Problemlösens und das Erlernen präziser Beweistechniken.Frühe Ausflüge ins Mehrdimensionale wecken Neugier und bereiten auf abstraktere Themen vor. Zusammenfassungen am Schluss jedes Abschnittes unterstützen bei der Prüfungsvorbereitung.Der Grundkurs schafft eine solide Ausgangsbasis für weiterführende Vorlesungen, vermeidet aber bewusst ein paar gefürchtete Hürden. Soweit möglich werden schwierigere Themen in die optionalen Ergänzungen verlagert. Begleitet wird der Stoff von zahlreichen Illustrationen, Ablaufdiagrammen, Tabellen, Beispielen und Aufgaben. In der dritten Auflage wurden jetzt auch die Lösungen der Aufgaben integriert.Das Buch ist geeignet zum Selbststudium, als Begleitlektüre und ganz besonders auch zur Prüfungsvorbereitung.
Dieser Grundkurs Funktionentheorie präsentiert in seinen ersten drei Kapiteln ohne Umwege die wichtigsten Elemente der komplexen Analysis einer Veränderlichen, von den komplexen Zahlen über die Grundzüge der Cauchy-Theorie bis hin zum Residuensatz.Darauf aufbauend werden im vierten Kapitel analytische Funktionen mit vorgegebenen Nullstellen und Polstellen konstruiert, zum Beispiel die Gamma-Funktion und die elliptischen Funktionen. Das abschließende fünfte Kapitel über geometrische Funktionentheorie stellt Zusammenhänge zwischen konformen Abbildungen und der Topologie ebener Gebiete her und zeigt, mit welchen Mitteln analytische Funktionen über ihren Definitionsbereich hinaus fortgesetzt werden können.Wie im Grundkurs Analysis wird auch hier viel Wert auf die didaktische Ausarbeitung gelegt, vor allem aber endet jedes Kapitel mit einer passenden Auswahl von Anwendungen aus der Mathematik, Physik oder den Ingenieurwissenschaften. Zahlreiche Übungsaufgaben und Illustrationen runden das Bild ab.Das Buch wendet sich an Bachelor- und Masterstudierende in Mathematik, Physik, Naturwissenschaften und Informationstechnologie. Es ist geeignet zum Selbststudium, als Begleitlektüre und zur Prüfungsvorbereitung.In der zweiten Auflage wurde der Text gründlich korrigiert, überarbeitet und besonders in den Abschnitten über den Residuensatz, die Zetafunktion, Automorphismen von Gebieten und normale Familien deutlich erweitert. Vor allem aber liefert das Buch jetzt auch Lösungen zu sämtlichen Aufgaben.Der AutorKlaus Fritzsche ist Autor zahlreicher erfolgreicher Lehrbücher, u.a. des beliebten Brückenkurses "Mathematik für Einsteiger" und der Grundkurse Analysis 1/2.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.