Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
With its emphasis on examples, exercises and calculations, this book suits advanced undergraduates as well as postgraduates and practitioners. It provides a clear treatment of the scope and limitations of mean-variance portfolio theory and introduces popular modern risk measures. Proofs are given in detail, assuming only modest mathematical background, but with attention to clarity and rigour. The discussion of VaR and its more robust generalizations, such as AVaR, brings recent developments in risk measures within range of some undergraduate courses and includes a novel discussion of reducing VaR and AVaR by means of hedging techniques. A moderate pace, careful motivation and more than 70 exercises give students confidence in handling risk assessments in modern finance. Solutions and additional materials for instructors are available at www.cambridge.org/9781107003675.
Driven by concrete computational problems in quantitative finance, this book provides aspiring quant developers with the numerical techniques and programming skills they need. The authors start from scratch, so the reader does not need any previous experience of C++. Beginning with straightforward option pricing on binomial trees, the book gradually progresses towards more advanced topics, including nonlinear solvers, Monte Carlo techniques for path-dependent derivative securities, finite difference methods for partial differential equations, and American option pricing by solving a linear complementarity problem. Further material, including solutions to all exercises and C++ code, is available online. The book is ideal preparation for work as an entry-level quant programmer and it gives readers the confidence to progress to more advanced skill sets involving C++ design patterns as applied in finance.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.