Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
Offers a unified Bayesian approach to handle missing data in longitudinal studies. This book contains examples and case studies on aging and HIV. It describes assumptions that include MAR and ignorability, demonstrate the importance of covariance modeling with incomplete data, and cover mixture and selection models for nonignorable missingness.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.