Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
In particular, a quite detailed account of the first-order structure of general metric measure spaces is presented, and the reader is introduced to the second-order calculus on spaces - known as RCD spaces - satisfying a synthetic lower Ricci curvature bound.
Analysis in singular spaces is becoming an increasingly important area of research, with motivation coming from the calculus of variations, PDEs, geometric analysis, metric geometry and probability theory, just to mention a few areas. In all these fields, the role of measure theory is crucial and an appropriate understanding of the interaction between the relevant measure-theoretic framework and the objects under investigation is important to a successful research.The aim of this book, which gathers contributions from leading specialists with different backgrounds, is that of creating a collection of various aspects of measure theory occurring in recent research with the hope of increasing interactions between different fields. List of contributors: Luigi Ambrosio, Vladimir I. Bogachev, Fabio Cavalletti, Guido De Philippis, Shouhei Honda, Tom Leinster, Christian Léonard, Andrea Marchese, Mark W. Meckes, Filip Rindler, Nageswari Shanmugalingam, Takashi Shioya, and Christina Sormani.
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.