Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This textbook is an introduction to non-standard analysis and to its many applications. Non standard analysis (NSA) is a subject of great research interest both in its own right and as a tool for answering questions in subjects such as functional analysis, probability, mathematical physics and topology. The book arises from a conference held in July 1986 at the University of Hull which was designed to provide both an introduction to the subject through introductory lectures, and surveys of the state of research. The first part of the book is devoted to the introductory lectures and the second part consists of presentations of applications of NSA to dynamical systems, topology, automata and orderings on words, the non- linear Boltzmann equation and integration on non-standard hulls of vector lattices. One of the book's attractions is that a standard notation is used throughout so the underlying theory is easily applied in a number of different settings. Consequently this book will be ideal for graduate students and research mathematicians coming to the subject for the first time and it will provide an attractive and stimulating account of the subject.
What can computers do in principle? What are their inherent theoretical limitations? These are questions to which computer scientists must address themselves. The theoretical framework which enables such questions to be answered has been developed over the last fifty years from the idea of a computable function: intuitively a function whose values can be calculated in an effective or automatic way. This book is an introduction to computability theory (or recursion theory as it is traditionally known to mathematicians). Dr Cutland begins with a mathematical characterisation of computable functions using a simple idealised computer (a register machine); after some comparison with other characterisations, he develops the mathematical theory, including a full discussion of non-computability and undecidability, and the theory of recursive and recursively enumerable sets. The later chapters provide an introduction to more advanced topics such as Gildel's incompleteness theorem, degrees of unsolvability, the Recursion theorems and the theory of complexity of computation. Computability is thus a branch of mathematics which is of relevance also to computer scientists and philosophers. Mathematics students with no prior knowledge of the subject and computer science students who wish to supplement their practical expertise with some theoretical background will find this book of use and interest.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.