Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
These notes present an investigation of a condition similar to Euclid's parallel axiom for subsets of finite sets. The background material to the theory of parallelisms is introduced and the author then describes the links this theory has with other topics from the whole range of combinatorial theory and permutation groups. These include network flows, perfect codes, Latin squares, block designs and multiply-transitive permutation groups, and long and detailed appendices are provided to serve as introductions to these various subjects. Many of the results are published for the first time.
Combinatorics is a subject of increasing importance, owing to its links with computer science, statistics and algebra. This is a textbook aimed at second-year undergraduates to beginning graduates. It stresses common techniques (such as generating functions and recursive construction) which underlie the great variety of subject matter and also stresses the fact that a constructive or algorithmic proof is more valuable than an existence proof. The book is divided into two parts, the second at a higher level and with a wider range than the first. Historical notes are included which give a wider perspective on the subject. More advanced topics are given as projects and there are a number of exercises, some with solutions given.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.