Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. Youll start with deep learning basics and move quickly to the details of important advanced architectures, implementing everything from scratch along the way.Author Seth Weidman shows you how neural networks work using a first principles approach. Youll learn how to apply multilayer neural networks, convolutional neural networks, and recurrent neural networks from the ground up. With a thorough understanding of how neural networks work mathematically, computationally, and conceptually, youll be set up for success on all future deep learning projects.This book provides:Extremely clear and thorough mental modelsaccompanied by working code examples and mathematical explanationsfor understanding neural networksMethods for implementing multilayer neural networks from scratch, using an easy-to-understand object-oriented frameworkWorking implementations and clear-cut explanations of convolutional and recurrent neural networksImplementation of these neural network concepts using the popular PyTorch framework
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.