Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This comprehensive compendium highlights the research results of nonlinear channel modeling and simulation. Nonlinear channels include nonlinear satellite channels, nonlinear Volterra channels, molecular MIMO channels, etc.This volume involves wavelet theory, neural network, echo state network, machine learning, support vector machine, chaos calculation, principal component analysis, Markov chain model, correlation entropy, fuzzy theory and other theories for nonlinear channel modeling and equalization.The useful reference text enriches the theoretical system of nonlinear channel modeling and improving the means of establishing nonlinear channel model. It is suitable for engineering technicians, researchers and graduate students in information and communication engineering, and control science and engineering, intelligent science and technology.
Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh. This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions. With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.