Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
In this fourth and final volume the author covers extensions of Buchberger's Algorithm, including a discussion of the most promising recent alternatives to Groebner bases: Gerdt's involutive bases and Faugere's F4 and F5 algorithms. This completes the author's comprehensive treatise, which is a fundamental reference for any mathematical library.
This third volume of four describes all the most important techniques, mainly based on Groebner bases. It covers the 'standard' solutions (Gianni-Kalkbrener, Auzinger-Stetter, Cardinal-Mourrain) as well as the more innovative (Lazard-Rouillier, Giusti-Heintz-Pardo). The author also explores the historical background, from Bezout to Macaulay.
Mora covers the classical theory of finding roots of a univariate polynomial, emphasising computational aspects. He shows that solving a polynomial equation really means finding algorithms that help one manipulate roots rather than simply computing them; to that end he also surveys algorithms for factorizing univariate polynomials.
The second volume of this comprehensive treatise focusses on Buchberger theory and its application to the algorithmic view of commutative algebra. Aiming to be a complete survey on Groebner bases and their applications, the book will be essential for all workers in commutative algebra, computational algebra and algebraic geometry.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.