Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This monograph is the first comprehensive treatment of multiplicity-free induced representations of finite groups as a generalization of finite Gelfand pairs.
This book presents a self-contained exposition of the theory of cellular automata on groups and explores its deep connections with recent developments in geometric group theory and other branches of mathematics and theoretical computer science.
The representation theory of the symmetric groups is a classical topic that, since the pioneering work of Frobenius, Schur and Young, has grown into a huge body of theory, with many important connections to other areas of mathematics and physics. This self-contained book provides a detailed introduction to the subject, covering classical topics such as the Littlewood-Richardson rule and the Schur-Weyl duality. Importantly the authors also present many recent advances in the area, including Lassalle's character formulas, the theory of partition algebras, and an exhaustive exposition of the approach developed by A. M. Vershik and A. Okounkov. A wealth of examples and exercises makes this an ideal textbook for graduate students. It will also serve as a useful reference for more experienced researchers across a range of areas, including algebra, computer science, statistical mechanics and theoretical physics.
Line up a deck of 52 cards on a table. Randomly choose two cards and switch them. How many switches are needed in order to mix up the deck? Starting from a few concrete problems such as random walks on the discrete circle and the finite ultrametric space this book develops the necessary tools for the asymptotic analysis of these processes. This detailed study culminates with the case-by-case analysis of the cut-off phenomenon discovered by Persi Diaconis. This self-contained text is ideal for graduate students and researchers working in the areas of representation theory, group theory, harmonic analysis and Markov chains. Its topics range from the basic theory needed for students new to this area, to advanced topics such as the theory of Green's algebras, the complete analysis of the random matchings, and the representation theory of the symmetric group.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.