We a good story
Quick delivery in the UK

Books by Valliappa Lakshmanan

Filter
Filter
Sort bySort Popular
  • by Michael Munn, Sara Robinson & Valliappa Lakshmanan
    £37.49

    The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.You'll learn how to:Identify and mitigate common challenges when training, evaluating, and deploying ML modelsRepresent data for different ML model types, including embeddings, feature crosses, and moreChoose the right model type for specific problemsBuild a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuningDeploy scalable ML systems that you can retrain and update to reflect new dataInterpret model predictions for stakeholders and ensure models are treating users fairly

  • - Data Warehousing, Analytics, and Machine Learning at Scale
    by Jordan Tigani & Valliappa Lakshmanan
    £37.49

    Work with petabyte-scale datasets while building a collaborative, agile workplace in the process. This practical book is the canonical reference to Google BigQuery, the query engine that lets you conduct interactive analysis of large datasets. BigQuery enables enterprises to efficiently store, query, ingest, and learn from their data in a convenient framework. With this book, youll examine how to analyze data at scale to derive insights from large datasets efficiently.Valliappa Lakshmanan, tech lead for Google Cloud Platform, and Jordan Tigani, engineering director for the BigQuery team, provide best practices for modern data warehousing within an autoscaled, serverless public cloud. Whether you want to explore parts of BigQuery youre not familiar with or prefer to focus on specific tasks, this reference is indispensable.

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.