We a good story
Quick delivery in the UK

Books in the Addison-Wesley Data & Analytics Series series

Filter
Filter
Sort bySort Series order
  • by Lindy Ryan
    £29.99

    The modules in this book will go beyond the dashboard to communicate business-relevant implications of data analyses using the analytic, visualization, and storytelling capabilities of Tableau, the most popular visualization software in use by businesses world today. Each chapter will split focus between discussing key components of design practice and data visualization and introducing a format for representing information with step-by-step guides for using Tableau. By the end of this book, readers will not only understand how data stories differ from traditional storytelling and how to purposefully craft a compelling data story, but also how to employ the horsepower of Tableau to structure data analysis projects so that they can effectively analyze, visualize, and communicate insights in a way that is meaningful for stakeholders across a variety of communication mediums.

  • - A Visual, Interactive Guide to Artificial Intelligence
    by Jon Krohn
    £34.99

    Deep learning is one of today's hottest fields. This approach to machine learning is achieving breakthrough results in some of today's highest profile applications, in organizations ranging from Google to Tesla, Facebook to Apple. Thousands of technical professionals and students want to start leveraging its power, but previous books on deep learning have often been non-intuitive, inaccessible, and dry. In Deep Learning Illustrated, three world-class instructors and practitioners present a uniquely visual, intuitive, and accessible high-level introduction to the techniques and applications of deep learning. Packed with vibrant, full-color illustrations, it abstracts away much of the complexity of building deep learning models, making the field more fun to learn and accessible to a far wider audience. Part I's high-level overview explains what Deep Learning is, why it has become so ubiquitous, and how it relates to concepts and terminology such as Artificial Intelligence, Machine Learning, Artificial Neural Networks, and Reinforcement Learning. These opening chapters are replete with vivid illustrations, easy-to-grasp analogies, and character-focused narratives. Building on this foundation, the authors then offer a practical reference and tutorial for applying a wide spectrum of proven deep learning techniques. Essential theory is covered with as little mathematics as possible and is illuminated with hands-on Python code. Theory is supported with practical "run-throughs" available in accompanying Jupyter notebooks, delivering a pragmatic understanding of all major deep learning approaches and their applications: machine vision, natural language processing, image generation, and videogaming. To help readers accomplish more in less time, the authors feature several of today's most widely used and innovative deep learning libraries, including TensorFlow and its high-level API, Keras; PyTorch; and the recently released, high-level Coach, a TensorFlow API that abstracts away the complexity typically associated with building Deep Reinforcement Learning algorithms. Ideal for software developers, data scientists, and analysts at all levels of experience Teaches through simple visuals, accessible Python code examples, character-driven narratives, and intuitive analogies Covers today's leading applications, including machine vision, natural language processing, image generation, and videogames Introduces four powerful Deep Learning libraries: TensorFlow, Keras, PyTorch, and Coach Carefully designed to minimize mathematical formulae and avoid unnecessary complexity The first full-color, illustrated, hands-on guide to the fundamentals of modern, deep-learning AI: simply the most intuitive, practical way to get started Ideal for software developers, data scientists, and analysts at all levels of experience Teaches through simple visuals, accessible Python code examples, character-driven narratives, and intuitive analogies Covers today's leading applications, including machine vision, natural language processing, image generation, and videogames Introduces four powerful Deep Learning libraries: TensorFlow, Keras, PyTorch, and Coach Carefully designed to minimize mathematical formulae and avoid unnecessary complexity

  • - Theory and Practice in Python
    by Laura Graesser
    £33.99

    In just a few years, deep reinforcement learning (DRL) systems such as DeepMinds DQN have yielded remarkable results. This hybrid approach to machine learning shares many similarities with human learning: its unsupervised self-learning, self-discovery of strategies, usage of memory, balance of exploration and exploitation, and its exceptional flexibility. Exciting in its own right, DRL may presage even more remarkable advances in general artificial intelligence. Deep Reinforcement Learning in Python: A Hands-On Introduction is the fastest and most accessible way to get started with DRL. The authors teach through practical hands-on examples presented with their advanced OpenAI Lab framework. While providing a solid theoretical overview, they emphasize building intuition for the theory, rather than a deep mathematical treatment of results. Coverage includes: Components of an RL system, including environment and agents Value-based algorithms: SARSA, Q-learning and extensions, offline learning Policy-based algorithms: REINFORCE and extensions; comparisons with value-based techniques Combined methods: Actor-Critic and extensions; scalability through async methods Agent evaluation Advanced and experimental techniques, and more How to achieve breakthrough machine learning performance by combining deep neural networks with reinforcement learning Reduces the learning curve by relying on the authors' OpenAI Lab framework: requires less upfront theory, math, and programming expertise Provides well-designed, modularized, and tested code examples with complete experimental data sets to illuminate the underlying algorithms Includes case studies, practical tips, definitions, and other aids to learning and mastery Prepares readers for exciting future advances in artificial general intelligenceThe accessible, hands-on, full-color tutorial for building practical deep reinforcement learning solutions How to achieve breakthrough machine learning performance by combining deep neural networks with reinforcement learning Reduces the learning curve by relying on the authors' OpenAI Lab framework: requires less upfront theory, math, and programming expertise Provides well-designed, modularized, and tested code examples with complete experimental data sets to illuminate the underlying algorithms Includes case studies, practical tips, definitions, and other aids to learning and mastery Prepares readers for exciting future advances in artificial general intelligence

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.