Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This is a study of the theory of models with truth values in a compact Hausdorff topological space.
A new group of contributions to the development of this theory by leading experts in the field. The contributors include L. D. Berkovitz, L. E. Dubins, H. Everett, W. H. Fleming, D. Gale, D. Gillette, S. Karlin, J. G. Kemeny, R. Restrepo, H. E. Scarf, M. Sion, G. L. Thompson, P. Wolfe, and others.
These two new collections, numbers 28 and 29 respectively in the Annals of Mathematics Studies, continue the high standard set by the earlier Annals Studies 20 and 24 by bringing together important contributions to the theories of games and of nonlinear differential equations.
The description for this book, Contributions to the Theory of Games (AM-24), Volume I, will be forthcoming.
The description for this book, Contributions to the Theory of Nonlinear Oscillations (AM-45), Volume V, will be forthcoming.
Annals of Mathematics Studies: Number 41The present volume of the Contributions, fourth in the series, covers, like its predecessors, a great variety of topics in non-linear differential equations.
The description for this book, Contributions to the Theory of Nonlinear Oscillations (AM-20), Volume I, will be forthcoming.
Written and revised by D. B. A. Epstein.
The description for this book, Contributions to the Theory of Nonlinear Oscillations (AM-36), Volume III, will be forthcoming.
The description for this book, Advances in Game Theory. (AM-52), will be forthcoming.
The study of exponential sums over finite fields, begun by Gauss nearly two centuries ago, has been completely transformed in recent years by advances in algebraic geometry, culminating in Deligne's work on the Weil Conjectures. It now appears as a very attractive mixture of algebraic geometry, representation theory, and the sheaf-theoretic incarnations of such standard constructions of classical analysis as convolution and Fourier transform. The book is simultaneously an account of some of these ideas, techniques, and results, and an account of their application to concrete equidistribution questions concerning Kloosterman sums and Gauss sums.
William Thurston (1946ΓÇô2012) was one of the great mathematicians of the twentieth century. He was a visionary whose extraordinary ideas revolutionized a broad range of mathematical fields, from foliations, contact structures, and Teichm├╝ller theory to automorphisms of surfaces, hyperbolic geometry, geometrization of 3-manifolds, geometric group theory, and rational maps. In addition, he discovered connections between disciplines that led to astonishing breakthroughs in mathematical understanding as well as the creation of entirely new fields. His far-reaching questions and conjectures led to enormous progress by other researchers. What''s Next? brings together many of today''s leading mathematicians to describe recent advances and future directions inspired by Thurston''s transformative ideas.Including valuable insights from his colleagues and former students, What''s Next? discusses Thurston''s fundamental contributions to topology, geometry, and dynamical systems and includes many deep and original contributions to the field. This incisive and wide-ranging book also explores how he introduced new ways of thinking about and doing mathematics, innovations that have had a profound and lasting impact on the mathematical community as a whole.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.