Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
Includes Lectures - Classical groups and classical differential operators on manifolds, Some aspects of invariant theory in differential geometry, and, Singular integral operators and nilpotent groups; and, Seminars - Diffusion et geometrie differentielle globale, and, Solvability of invariant differential operators on homonogeneous manifolds.
"Economia Matematica".
Includes lectures: C B Allendorfer: Global differential geometry of imbedded manifolds, and seminars: P Libermann: Pseudo-groupes infitesimaux.
Includes topics suah as: On the group of diffeomorphisms preserving an exact symplectic; Some remarks on Cauchy-Riemann structures; Differentiable Cohomology; On the homology of Haefliger's classifying space; Manifolds of differentiable maps; and, Some remarks on low-dimensional topology and immersion theory.
Bauer: Harmonic spaces and associated Markov processes.- J.M. Bony: Operateurs elliptiques degeneres associes aux axiomatiques de la theorie du potentiel.- J. Deny: Methodes hilbertiennes en theory du potentiel.- J.L. Doob: Martingale theory - Potential theory.- G. Mokobodzki: Cones de potentiels et noyaux subordonnes.
"Wave Propagation".
Kuhn: Locational problems and mathematical programming.- M. Kornai: Experiments in Hungary with industry-wide and economy wide programming.- A. Prekopa: Probability distribution problems concerning stochastic programming problems.- R. Frisch: General principles and mathematical techniques of macroeconomic programming.
Bottaro: Quelques resultats d'analyse spectrale pour des operateurs differentiels a coefficients constants sur des domaines non bornes.- L. Goulaouic: Valeurs propres de problemes aux limites irreguliers: applications.- G. Wilcox: Spectral analysis of the Laplacian with a discontinuous coefficient.
R.E. Miller: Parallel program schemata.- D.E. Muller: Theory of automata.- R. Karp: Computational complexity of combinatorial and graph-theoretic problems.
Lectures: G.E. Sacks: Model theory and applications.- H.J. Keisler: Constructions in model theory.- Seminars: M. Servi: SH formulas and generalized exponential.- J.A. Makowski: Topological model theory.
H. Hermes: Basic notions and applications of the theory of decidability.- D. Kurepa: On several continuum hypotheses.- A. Mostowski: Models of set theory.- A. Robinson: Problems and methods of model theory.- S. Sochor, B. Balcar: The general theory of semisets. Syntactic models of the set theory.
S. Amitsur: Associative rings with identities.- I.N. Herstein: Topics in ring theory.- N. Jacobson: Representation theory of Jordan algebras.- I. Kaplansky: The theory of homological dimension.- D. Buchsbaum: Complexes in local ring theory.- P.H. Cohn: Two topics in ring theory.- A.W. Goldie: Non-commutative localisation.
ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi's measure and thin obstacles.
R.E. Kalman: Lectures on controllability and observability.- E. Kulikowski: Controllability and optimum contro.- A. Straszak: Supervisory controllabilityl.- L. Weiss: Lectures on controllability and observability.
S. Homer: Admissible recursion theory.- B.E. Jacobs: Computational complexity and recursion theory.- D. Normann: A survey of set recursion.- G.E. Sacks: Priority arguments in Higgler recursion.- R.I. Soare: Construction in the recursively enumerable degrees.- W. Maass: Recursively invariant recursion theory.
F. Lazzeri: Analytic singularities.- V. Poenaru: Lectures of the singularities of C mappings.- A. Tognoli: About the set of non coherence of a real analytic variety. Pathology and imbedding problems for real analytic spaces.
Beauville: Surfaces algebriques complexes.- F.A. Bogomolov: The theory of invariants and its applications to some problems in the algebraic geometry.- E. Catanese: Pluricanonical mappings of surfaces with K(2) =1,2, q=pg=0.- F. Catanese: On a class of surfaces of general type.- I. Dolgacev: Algebraic surfaces with p=pg =0.- A.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.