Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This book provides an introduction to topology, differential topology, and differential geometry.
This textbook shall serve a double purpose: first of all, it is a book about generalized stochastic processes, a very important but highly neglected part of probability theory which plays an outstanding role in noise modelling. Secondly, this textbook is a guide to noise modelling for mathematicians and engineers to foster the interdisciplinary discussion between mathematicians (to provide effective noise models) and engineers (to be familiar with the mathematical backround of noise modelling in order to handle noise models in an optimal way).Two appendices on "A Short Course in Probability Theory" and "Spectral Theory of Stochastic Processes" plus a well-choosen set of problems and solutions round this compact textbook off.
This book enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. High school students have the potential to explore it, and undergraduate students can master it. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth.
Initial topology, topological vector spaces, weak topology.- Convexity, separation theorems, locally convex spaces.- Polars, bipolar theorem, polar topologies.- The theorems of Tikhonov and Alaoglu-Bourbaki.- The theorem of Mackey-Arens.- Topologies on E'''', quasi-barrelled and barrelled spaces.- Reflexivity.- Completeness.- Locally convex final topology, topology of D(\Omega).- Precompact -- compact - complete.- The theorems of Banach--Dieudonne and Krein-Smulian.- The theorems of Eberlein--Grothendieck and Eberlein-Smulian.- The theorem of Krein.- Weakly compact sets in L_1(\mu).- \cB_0''''=\cB.- The theorem of Krein-Milman.- A The theorem of Hahn-Banach.- B Baire''s theorem and the uniform boundedness theorem.
Probabilistic modeling and analysis of spatial telecommunication systems have never been more important than they are today. It especially highlights two important limiting scenarios of large spatial systems: the high-density limit and the ergodic limit.
The book concisely presents the fundamental aspects of the theory of operators on Hilbert spaces. The topics covered include functional calculus and spectral theorems, compact operators, trace class and Hilbert-Schmidt operators, self-adjoint extensions of symmetric operators, and one-parameter groups of operators.The exposition of the material on unbounded operators is based on a novel tool, called the z-transform, which provides a way to encode full information about unbounded operators in bounded ones, hence making many technical aspects of the theory less involved.
This beginners' course provides students with a general and sufficiently easy to grasp theory of the Kurzweil-Henstock integral. The integral is indeed more general than Lebesgue's in RN, but its construction is rather simple, since it makes use of Riemann sums which, being geometrically viewable, are more easy to be understood.
This textbook provides an introduction to the Catalan numbers and their remarkable properties, along with their various applications in combinatorics.
The book will be welcomed by upper undergraduate/early graduate students who wish to better understand certain concepts and results of probability theory, statistics, economic equilibrium theory, game theory, etc., where the Lebesgue integral makes its presence felt throughout.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.