Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This book contains a first systematic study of compressible fluid flows subject to stochastic forcing. The bulk is the existence of dissipative martingale solutions to the stochastic compressible Navier-Stokes equations. These solutions are weak in the probabilistic sense as well as in the analytical sense. Moreover, the evolution of the energy can be controlled in terms of the initial energy. We analyze the behavior of solutions in short-time (where unique smooth solutions exists) as well as in the long term (existence of stationary solutions). Finally, we investigate the asymptotics with respect to several parameters of the model based on the energy inequality. ContentsPart I: Preliminary results Elements of functional analysis Elements of stochastic analysis Part II: Existence theory Modeling fluid motion subject to random effects Global existence Local well-posedness Relative energy inequality and weak-strong uniqueness Part III: Applications Stationary solutions Singular limits
Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book.Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. a ContentsThe basic properties of Richardson extrapolationRichardson extrapolation for explicit Runge-Kutta methodsLinear multistep and predictor-corrector methodsRichardson extrapolation for some implicit methodsRichardson extrapolation for splitting techniquesRichardson extrapolation for advection problemsRichardson extrapolation for some other problemsGeneral conclusions
This monograph is concerned with free-boundary problems of partial differential equations arising in the physical sciences and in engineering. The existence and uniqueness of solutions to the Hele-Shaw problem are derived and techniques to deal with the Muskat problem are discussed. Based on these, mathematical models for the dynamics of cracks in underground rocks and in-situ leaching are developed. ContentsIntroductionThe Hele-Shaw problemA joint motion of two immiscible viscous fluidsMathematical models of in-situ leachingDynamics of cracks in rocksElements of continuum mechanics
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.