Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
Can you solve the problem of "The Unfair Subway"?Marvin gets off work at random times between 3 and 5 p.m. His mother lives uptown, his girlfriend downtown. He takes the first subway that comes in either direction and eats dinner with the one he is delivered to. His mother complains that he never comes to see her, but he says she has a 50-50 chance. He has had dinner with her twice in the last 20 working days. Explain.Marvin's adventures in probability are one of the fifty intriguing puzzles that illustrate both elementary ad advanced aspects of probability, each problem designed to challenge the mathematically inclined. From "The Flippant Juror" and "The Prisoner's Dilemma" to "The Cliffhanger" and "The Clumsy Chemist," they provide an ideal supplement for all who enjoy the stimulating fun of mathematics.Professor Frederick Mosteller, who teaches statistics at Harvard University, has chosen the problems for originality or general interest, or because they demonstrate valuable techniques. In addition, the problems are graded as to difficulty and many have considerable stature. Indeed, one has "enlivened the research lives of many excellent mathematicians." Detailed solutions are included. There is every probability you'll need at least a few of them.
Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.
Volume 1 of an authoritative two-volume set that covers the essentials of mathematics and features every landmark innovation and every important figure, including Euclid, Apollonius, and others.
Compact, well-written survey ranges from the ancient Near East to 20th-century computer theory, covering Archimedes, Pascal, Gauss, Hilbert, and many others. "A work which is unquestionably one of the best." -- "Nature."
The definitive edition of one of the very greatest classics of all time--the full Euclid, encompassing almost 2500 years of mathematical and historical study. This unabridged republication of the original enlarged edition contains the complete English text of all 13 books of the ELEMENTS, plus analyses of each definition, postulate, and proposition.
Superb non-technical introduction to game theory, primarily applied to social sciences. Clear, comprehensive coverage of utility theory, 2-person zero-sum games, 2-person non-zero-sum games, n-person games, individual and group decision-making, more. Bibliography.
Volume 2 of an authoritative two-volume set that covers the essentials of mathematics and features every landmark innovation and every important figure, including Euclid, Apollonius, and others.
Definitive treatment covers split semi-simple Lie algebras, universal enveloping algebras, classification of irreducible modules, automorphisms, simple Lie algebras over an arbitrary field, and more. Classic handbook for researchers and students; useable in graduate courses or for self-study.
This classic text covers order statistics and their exceedances; exact distribution of extremes; the 1st asymptotic distribution; uses of the 1st, 2nd, and 3rd asymptotes; more. 1958 edition. Includes 44 tables and 97 graphs.
Superb study of one of the most influential classics in mathematics examines the landmark 1859 publication entitled "On the Number of Primes Less Than a Given Magnitude," and traces developments in theory inspired by it. Topics include Riemann's main formula, the prime number theorem, the Riemann-Siegel formula, large-scale computations, Fourier analysis, and other related topics.
The definitive book on tiling and geometric patterns, this magnificently illustrated volume features 520 figures and more than 100 tables. Accessible to anyone with a grasp of geometry, it offers numerous graphic examples of two-dimensional spaces covered with interlocking figures, in addition to related problems and references. Suitable for geometry courses as well as independent study, this inspiring book is geared toward students, professional mathematicians, and readers interested in patterns and shapes―artists, architects, and crystallographers, among others. Along with helpful examples from mathematics and geometry, it draws upon models from fields as diverse as crystallography, virology, art, philosophy, and quilting. The self-contained chapters need not be read in sequence, and each concludes with an excellent selection of notes and references. The first seven chapters can be used as a classroom text, and the final five contain fascinating browsing material, including detailed surveys of color patterns, groups of color symmetry, and tilings by polygons. The authors have also added a new Preface and Appendix to this second edition.Dover unabridged, corrected republication of the edition published by W. H. Freeman & Company, New York, 1987.See every Dover book in print atwww.doverpublications.com
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.