Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This book focuses on issues related to mathematics teaching and learning resources, including mathematics textbooks, teacher guides, student learning and assessment materials, and online resources.
The third section presents four new innovations in mathematics learning and/or mathematics teacher education that involve the development of novel interfaces' for communicating mathematical ideas and analyzing student thinking and student work.
This book consists of 13 papers developed by participants in the ICME 13 Topic Study Group 40 on Classroom Assessment. The individual papers discuss various aspects of classroom assessment, focusing particularly on formative assessment as assessment for learning, and are grouped into four main sections: Examples of Classroom Assessment in Action, Technology as a Tool for Classroom Assessment, Statistical Models for Formative Assessment, and Engaging Teachers in Formative Assessment. The book opens with a brief discussion of the use of formative assessment as a critical component of the teaching¿learning process and concludes with an overview of lessons learned and ideas for future research. It is of interest to classroom teachers, university teacher educators, professional development providers and school supervisors.
In this context, research on the teaching and learning of geometry will continue to be a key element on the research agendas of mathematics educators, as researchers continue to look for ways to enhance student learning and to understand student thinking and teachers' decision making.
This book offers an up-to-date overview of the research on philosophy of mathematics education, one of the most important and relevant areas of theory. The contributions analyse, question, challenge, and critique the claims of mathematics education practice, policy, theory and research, offering ways forward for new and better solutions. The book poses basic questions, including: What are our aims of teaching and learning mathematics? What is mathematics anyway? How is mathematics related to society in the 21st century? How do students learn mathematics? What have we learnt about mathematics teaching? Applied philosophy can help to answer these and other fundamental questions, and only through an in-depth analysis can the practice of the teaching and learning of mathematics be improved. The book addresses important themes, such as critical mathematics education, the traditional role of mathematics in schools during the current unprecedented political, social, and environmental crises, and the way in which the teaching and learning of mathematics can better serve social justice and make the world a better place for the future.
This open access book provides an overview of Felix Klein's ideas, highlighting developments in university teaching and school mathematics related to Klein's thoughts, stemming from the last century.
This open access book discusses several didactic traditions in mathematics education in countries across Europe, including France, the Netherlands, Italy, Germany, the Czech and Slovakian Republics, and the Scandinavian states.
This book discusses a significant area of mathematics education research in the last two decades and presents the types of semiotic theories that are employed in mathematics education.
This book presents innovative approaches and state-of-the-art empirical studies on mathematics teacher learning. The book details how representations of practice encourage and afford professional development, and describes how these tools help to investigate aspects of teacher expertise, beliefs, and conceptions.
This open access book is the first major publication on the topic of "Interdisciplinary Mathematics Education" and arose from the work of the first International Topic Study Group of the same name at the ICME-13 conference in Hamburg in 2016.
This open access book shares revealing insights into the development of mathematics education research in Germany from 1976 (ICME 3 in Karlsruhe) to 2016 (ICME 13 in Hamburg). How did mathematics education research evolve in the course of these four decades? Which ideas and people were most influential, and how did German research interact with the international community?These questions are answered by scholars from a range of fields and in ten thematic sections: (1) a short survey of the development of educational research on mathematics in German speaking countries (2) subject-matter didactics, (3) design science and design research, (4) modelling, (5) mathematics and Bildung 1810 to 1850, (6) Allgemeinbildung, Mathematical Literacy, and Competence Orientation (7) theory traditions, (8) classroom studies, (9) educational research and (10) large-scale studies. During the time span presented here, profound changes took place in German-speaking mathematics education research. Besides the traditional fields of activity like subject-matter didactics or design science, completely new areas also emerged, which are characterized by various empirical approaches and a closer connection to psychology, sociology, epistemology and general education research. Each chapter presents a respective area of mathematics education in Germany and analyzes its relevance for the development of the research community, not only with regard to research findings and methods but also in terms of interaction with the educational system. One of the central aspects in all chapters concerns the constant efforts to find common ground between mathematics and education. In addition, readers can benefit from this analysis by comparing the development shown here with the mathematical education research situation in their own country.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.