Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
Big Data Analytics for Sensor-Network Collected Intelligence explores state-of-the-art methods for using advanced ICT technologies to perform intelligent analysis on sensor collected data. The book shows how to develop systems that automatically detect natural and human-made events, how to examine people''s behaviors, and how to unobtrusively provide better services. It begins by exploring big data architecture and platforms, covering the cloud computing infrastructure and how data is stored and visualized. The book then explores how big data is processed and managed, the key security and privacy issues involved, and the approaches used to ensure data quality. In addition, readers will find a thorough examination of big data analytics, analyzing statistical methods for data analytics and data mining, along with a detailed look at big data intelligence, ubiquitous and mobile computing, and designing intelligence system based on context and situation. Contains contributions from noted scholars in computer science and electrical engineering from around the globeProvides a broad overview of recent developments in sensor collected intelligenceEdited by a team comprised of leading thinkers in big data analytics
Internet of Things (IoT) is a new platform of various physical objects or "things” equipped with sensors, electronics, smart devices, software, and network connections. IoT represents a new revolution of the Internet network which is driven by the recent advances of technologies such as sensor networks (wearable and implantable), mobile devices, networking, and cloud computing technologies. IoT permits these the smart devices to collect, store and analyze the collected data with limited storage and processing capacities. Swarm Intelligence for Resource Management in the Internet of Things presents a new approach in Artificial Intelligence that can be used for resources management in IoT, which is considered a critical issue for this network. The authors demonstrate these resource management applications using swarm intelligence techniques. Currently, IoT can be used in many important applications which include healthcare, smart cities, smart homes, smart hospitals, environment monitoring, and video surveillance. IoT devices cannot perform complex on-site data processing due to their limited battery and processing. However, the major processing unit of an application can be transmitted to other nodes, which are more powerful in terms of storage and processing. By applying swarm intelligence algorithms for IoT devices, we can provide major advantages for energy saving in IoT devices. Swarm Intelligence for Resource Management in the Internet of Things shows the reader how to overcome the problems and challenges of creating and implementing swarm intelligence algorithms for each applicationExamines the development and application of swarm intelligence systems in artificial intelligence as applied to the Internet of ThingsDiscusses intelligent techniques for the implementation of swarm intelligence in IoTPrepared for researchers and specialists who are interested in the use and integration of IoT and cloud computing technologies
E-health applications such as tele-medicine, tele-radiology, tele-ophthalmology, and tele-diagnosis are very promising and have immense potential to improve global healthcare. They can improve access, equity, and quality through the connection of healthcare facilities and healthcare professionals, diminishing geographical and physical barriers. One critical issue, however, is related to the security of data transmission and access to the technologies of medical information. Currently, medical-related identity theft costs billions of dollars each year and altered medical information can put a person''s health at risk through misdiagnosis, delayed treatment or incorrect prescriptions. Yet, the use of hand-held devices for storing, accessing, and transmitting medical information is outpacing the privacy and security protections on those devices. Researchers are starting to develop some imperceptible marks to ensure the tamper-proofing, cost effective, and guaranteed originality of the medical records. However, the robustness, security and efficient image archiving and retrieval of medical data information against these cyberattacks is a challenging area for researchers in the field of e-health applications. Intelligent Data Security Solutions for e-Health Applications focuses on cutting-edge academic and industry-related research in this field, with particular emphasis on interdisciplinary approaches and novel techniques to provide security solutions for smart applications. The book provides an overview of cutting-edge security techniques and ideas to help graduate students, researchers, as well as IT professionals who want to understand the opportunities and challenges of using emerging techniques and algorithms for designing and developing more secure systems and methods for e-health applications. Investigates new security and privacy requirements related to eHealth technologies and large sets of applicationsReviews how the abundance of digital information on system behavior is now being captured, processed, and used to improve and strengthen security and privacyProvides an overview of innovative security techniques which are being developed to ensure the guaranteed authenticity of transmitted, shared or stored data/information
Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discovery of mechanisms that create data. It provides computational methods and tools for intelligent data analysis, with an emphasis on problem-solving relating to automated data collection, such as computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and more. This book provides useful references for educational institutions, industry professionals, researchers, scientists, engineers and practitioners interested in intelligent data analysis, knowledge discovery, and decision support in databases.Provides the methods and tools necessary for intelligent data analysis and gives solutions to problems resulting from automated data collectionContains an analysis of medical databases to provide diagnostic expert systemsAddresses the integration of intelligent data analysis techniques within biomedical information systems
Smart Delivery Systems: Solving Complex Vehicle Routing Problems examines both exact and approximate methods for delivering optimal solutions to rich vehicle routing problems, showing both the advantages and disadvantages of each approach. It shows how to apply machine learning and advanced data analysis techniques to improve routing systems, familiarizing readers with the concepts and technologies used in successfully implemented delivery systems. The book explains both the latest theoretical and practical advances in intelligent delivery and scheduling systems and presents practical applications for designing new algorithms for real-life scenarios.Emphasizes both sequential and parallel algorithmsUniquely combines methods and algorithms, real-life applications, and parallel computingIncludes recommendations on how to choose between different methods for solving applicationsProvides learning aids, end of chapter references, bibliography, worked examples and exercises
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.