We a good story
Quick delivery in the UK

Books in the London Mathematical Society Lecture Note Series series

Filter
Filter
Sort bySort Series order
  • by Kai (Tianjin Normal University Liu
    £67.99

    The stability of stochastic differential equations in abstract, mainly Hilbert, spaces receives a unified treatment in this self-contained book. It covers basic theory as well as computational techniques. It will be useful for researchers across numerical computation, engineering, and mathematical physics and biology.

  •  
    £60.99

    This book focuses on generalisations of Gromov hyperbolicity in geometric group theory. Five self-contained expository articles introduce topics 'beyond hyperbolicity': these can be used as an introduction for students or as a reference for experts. The final part contains research articles on the latest results in this rich and active field.

  •  
    £67.99

    The eight articles in this book provide a valuable survey of the present state of knowledge in combinatorics. Written by leading experts in the field, they provide expanded accounts of plenary seminars given at the British Combinatorial Conference in July 2019.

  •  
    £85.99

    Created as a celebration of mathematical pioneer Emma Previato, this comprehensive second volume highlights the connections between her main fields of research, namely algebraic geometry and integrable systems. Written by leaders in the field, the text is accessible to graduate students and non-experts, as well as researchers.

  •  
    £43.49

    The book is designed for graduate students and beginning researchers into the arithmetic theory of automorphic forms, and for all who want to know more about the Langlands program. It forms a sequel to On the Stabilization of the Trace Formula published in 2011.

  •  
    £74.49

    Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between her main fields of research, namely algebraic geometry and integrable systems. Written by leaders in the field, the text is accessible to graduate students and non-experts, as well as researchers.

  •  
    £81.49

    This book addresses the interplay between several rapidly expanding areas of mathematics. Suitable for graduate students as well as researchers, it provides surveys of topics linking geometry, spectral theory and stochastics.

  • by Mark Pankov
    £53.49

    Wigner's theorem plays an important role in the mathematical foundations of quantum mechanics. This book provides a quick, accessible introduction to the geometric approach to Wigner-type theorems, unifying both classical and more recent results, and is suitable for graduate students as well as more experienced researchers.

  • by Ashish K. (St Louis University Srivastava
    £36.49

    This is the first book on the topic of study of modules invariant under automorphisms of their envelopes and covers. Containing plentiful examples and open problems, it is a valuable resource for graduate students and researchers in algebra who wish to learn the state of the art in this area of module theory.

  • by Bruno Kahn
    £57.99

    Zeta and L-functions have played a major part in the development of number theory. This book for graduate students and researchers presents a big picture of some key results and surrounding theory, whilst taking the reader on a journey through the history of their development.

  •  
    £58.99

    The nine survey articles in this book provide expanded accounts of plenary lectures given at the British Combinatorial Conference in July 2021. Written by leading experts in the field, they present the state of the art in several areas of contemporary interest in combinatorics.

  • by Jan-Hendrik (Universiteit Leiden) Evertse
    £54.49

    This book provides a comprehensive guide to Diophantine equations over finitely generated domains, with a focus on proving effective finiteness results. No specialized knowledge is required, enabling graduate students and experts alike to learn the necessary techniques and apply them in their own research.

  • by D. J. Saunders
    £67.99

    The purpose of this book is to provide an introduction to the theory of jet bundles for mathematicians and physicists who wish to study differential equations, particularly those associated with the calculus of variations, in a modern geometric way. One of the themes of the book is that first-order jets may be considered as the natural generalisation of vector fields for studying variational problems in field theory, and so many of the constructions are introduced in the context of first- or second-order jets, before being described in their full generality. The book includes a proof of the local exactness of the variational bicomplex. A knowledge of differential geometry is assumed by the author, although introductory chapters include the necessary background of fibred manifolds, and on vector and affine bundles. Coordinate-free techniques are used throughout, although coordinate representations are often used in proofs and when considering applications.

  • by B. R. Tennison
    £56.99

    Sheaf theory provides a means of discussing many different kinds of geometric objects in respect of the connection between their local and global properties. It finds its main applications in topology and modern algebraic geometry where it has been used as a tool for solving, with great success, several long-standing problems. This text is based on a lecture course for graduate pure mathematicians which builds up enough of the foundations of sheaf theory to give a broad definition of manifold, covering as special cases the algebraic geometer's schemes as well as the topological, differentiable and analytic kinds, and to define sheaf cohomology for application to such objects. Exercises are provided at the end of each chapter and at various places in the text. Hints and solutions to some of them are given at the end of the book.

  • by Hans Joachim Baues
    £39.99

    A fundamental problem of algebraic topology is the classification of homotopy types and homotopy classes of maps. In this work the author extends results of rational homotopy theory to a subring of the rationale. The methods of proof employ classical commutator calculus of nilpotent group and Lie algebra theory and rely on an extensive and systematic study of the algebraic properties of the classical homotopy operations (composition and addition of maps, smash products, Whitehead products and higher order James-Hopi invariants). The account is essentially self-contained and should be accessible to non-specialists and graduate students with some background in algebraic topology and homotopy theory.

  • by Patrick Du Val
    £38.99

    A comprehensive treatment of elliptic functions is linked by these notes to a study of their application to elliptic curves. This approach provides geometers with the opportunity to acquaint themselves with aspects of their subject virtually ignored by other texts. The exposition is clear and logically carries themes from earlier through to later topics. This enthusiastic work of scholarship is made complete with the inclusion of some interesting historical details and a very comprehensive bibliography.

  • by G. D. James
    £50.99

    The most important examples of finite groups are the group of permutations of a set of n objects, known as the symmetric group, and the group of non-singular n-by-n matrices over a finite field, which is called the general linear group. This book examines the representation theory of the general linear groups, and reveals that there is a close analogy with that of the symmetric groups. It consists of an essay which was joint winner of the Cambridge University Adams Prize 1981-2, and is intended to be accessible to mathematicians with no previous specialist knowledge of the topics involved. Many people have studied the representations of general linear groups over fields of the natural characteristic, but this volume explores new territory by considering the case where the characteristic of the ground field is not the natural one. Not only are the results in the book elegant and interesting in their own right, but they suggest many lines for further investigation.

  • by M. C. Crabb
    £36.49

    This account is a study of twofold symmetry in algebraic topology. The author discusses specifically the antipodal involution of a real vector bundle - multiplication by - I in each fibre; doubling and squaring operations; the symmetry of bilinear forms and Hermitian K-theory. In spite of its title, this is not a treatise on equivariant topology; rather it is the language in which to describe the symmetry. Familiarity with the basic concepts of algebraic topology (homotopy, stable homotopy, homology, K-theory, the Pontrjagin-Thom transfer construction) is assumed. Detailed proofs are not given (the expert reader will be able to supply them when necessary) yet nowhere is credibility lost. Thus the approach is elementary enough to provide an introduction to the subject suitable for graduate students although research workers will find here much of interest.

  • by L. Egghe
    £58.99

    This book considers convergence of adapted sequences of real and Banach space-valued integrable functions, emphasizing the use of stopping time techniques. Not only are highly specialized results given, but also elementary applications of these results. The book starts by discussing the convergence theory of martingales and sub-( or super-) martingales with values in a Banach space with or without the Radon-Nikodym property. Several inequalities which are of use in the study of the convergence of more general adapted sequence such as (uniform) amarts, mils and pramarts are proved and sub- and superpramarts are discussed and applied to the convergence of pramarts. Most of the results have a strong relationship with (or in fact are characterizations of) topological or geometrical properties of Banach spaces. The book will interest research and graduate students in probability theory, functional analysis and measure theory, as well as proving a useful textbook for specialized courses on martingale theory.

  • by Sharad S. Sane & Mohan S. Shrikhande
    £36.49

    Design theory is a branch of combinatorics with applications in number theory, coding theory and geometry. In this book the authors discuss the generalization of results and applications to quasi-symmetric designs. The coverage is comprehensive and will be useful for researchers and graduate students. An attractive feature is the discussion of unsolved problems.

  • - A Toolkit for Operator Algebraists
    by E. Christopher Lance
    £29.49

    Hilbert C*-modules are objects like Hilbert spaces, except that the inner product, instead of being complex valued, takes its values in a C*-algebra. The theory of these modules, together with their bounded and unbounded operators, is not only rich and attractive in its own right but forms an infrastructure for some of the most important research topics in operator algebras. This book is based on a series of lectures given by Professor Lance at a summer school at the University of Trondheim. It provides, for the first time, a clear and unified exposition of the main techniques and results in this area, including a substantial amount of new and unpublished material. It will be welcomed as an excellent resource for all graduate students and researchers working in operator algebras.

  • by Evgenii I. Khukhro
    £44.49

    This book provides a detailed but concise account of the theory of structure of finite p-groups admitting p-automorphisms with few fixed points. The relevant preliminary material on Lie rings is introduced and the main theorems of the book on the solubility of finite p-groups are then presented. The proofs involve notions such as viewing automorphisms as linear transformations, associated Lie rings, powerful p-groups, and the correspondences of A. I. Mal'cev and M. Lazard given by the Baker-Hausdorff formula. Many exercises are included. This book is suitable for graduate students and researchers working in the fields of group theory and Lie rings.

  • by Daniel Delbourgo
    £63.49

    The arithmetic properties of modular forms and elliptic curves lie at the heart of modern number theory. This book develops a generalisation of the method of Euler systems to a two-variable deformation ring. The resulting theory is then used to study the arithmetic of elliptic curves, in particular the Birch and Swinnerton-Dyer (BSD) formula. Three main steps are outlined: the first is to parametrise 'big' cohomology groups using (deformations of) modular symbols. Finiteness results for big Selmer groups are then established. Finally, at weight two, the arithmetic invariants of these Selmer groups allow the control of data from the BSD conjecture. As the first book on the subject, the material is introduced from scratch; both graduate students and professional number theorists will find this an ideal introduction. Material at the very forefront of current research is included, and numerical examples encourage the reader to interpret abstract theorems in concrete cases.

  • by Allan Sinclair & Roger Smith
    £73.49

    A thorough account of the methods that underlie the theory of subalgebras of finite von Neumann algebras, this book contains a substantial amount of current research material and is ideal for those studying operator algebras. The conditional expectation, basic construction and perturbations within a finite von Neumann algebra with a fixed faithful normal trace are discussed in detail. The general theory of maximal abelian self-adjoint subalgebras (masas) of separable II1 factors is presented with illustrative examples derived from group von Neumann algebras. The theory of singular masas and Sorin Popa's methods of constructing singular and semi-regular masas in general separable II1 factor are explored. Appendices cover the ultrapower of a II1 factor and the properties of unbounded operators required for perturbation results. Proofs are given in considerable detail and standard basic examples are provided, making the book understandable to postgraduates with basic knowledge of von Neumann algebra theory.

  • by Martin T. Barlow
    £54.49

    This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Poincare inequalities. The book presents rough isometries and looks at the properties of a graph that are stable under these transformations. Applications include the 'type problem': determining whether a graph is transient or recurrent. The final chapters show how geometric properties of the graph can be used to establish heat kernel bounds, that is, bounds on the transition probabilities of the random walk, and it is proved that Gaussian bounds hold for graphs that are roughly isometric to Euclidean space. Aimed at graduate students in mathematics, the book is also useful for researchers as a reference for results that are hard to find elsewhere.

  • by Grant Walker & Reginald M. W. Wood
    £74.99

    This is the first book to link the mod 2 Steenrod algebra, a classical object of study in algebraic topology, with modular representations of matrix groups over the field F of two elements. The link is provided through a detailed study of Peterson's 'hit problem' concerning the action of the Steenrod algebra on polynomials, which remains unsolved except in special cases. The topics range from decompositions of integers as sums of 'powers of 2 minus 1', to Hopf algebras and the Steinberg representation of GL(n,F). Volume 1 develops the structure of the Steenrod algebra from an algebraic viewpoint and can be used as a graduate-level textbook. Volume 2 broadens the discussion to include modular representations of matrix groups.

  • by Csaba Schneider & Cheryl E. Praeger
    £67.99

    Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan-Scott theory are presented not only for primitive permutation groups but also for the larger families of quasiprimitive and innately transitive groups, including several classes of infinite permutation groups. Their precision is sharpened by the introduction of a cartesian decomposition concept. This facilitates reduction arguments for primitive groups analogous to those, using orbits and partitions, that reduce problems about general permutation groups to primitive groups. The results are particularly powerful for finite groups, where the finite simple group classification is invoked. Applications are given in algebra and combinatorics to group actions that preserve cartesian product structures. Students and researchers with an interest in mathematical symmetry will find the book enjoyable and useful.

  • - A Game-Theoretic Approach
    by Gabriel Sandu, Allen L. Mann & Merlijn Sevenster
    £61.49

    Bringing together over twenty years of research, this book gives a complete overview of independence-friendly logic. It emphasizes the game-theoretical approach to logic, according to which logical concepts such as truth and falsity are best understood via the notion of semantic games. The book pushes the paradigm of game-theoretical semantics further than the current literature by showing how mixed strategies and equilibria can be used to analyze independence-friendly formulas on finite models. The book is suitable for graduate students and advanced undergraduates who have taken a course on first-order logic. It contains a primer of the necessary background in game theory, numerous examples and full proofs.

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.