Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This book presents methods and results from the theory of Zariski structures and discusses their applications in geometry as well as various other mathematical fields. Its logical approach helps us understand why algebraic geometry is so fundamental throughout mathematics and why the extension to noncommutative geometry, which has been forced by recent developments in quantum physics, is both natural and necessary. Beginning with a crash course in model theory, this book will suit not only model theorists but also readers with a more classical geometric background.
After a forty-year lull, the study of word-values in groups has sprung back into life with some spectacular new results in finite group theory. These are largely motivated by applications to profinite groups, including the solution of an old problem of Serre. This book presents a comprehensive account of the known results, both old and new. The more elementary methods are developed from scratch, leading to self-contained proofs and improvements of some classic results about infinite soluble groups. This is followed by a detailed introduction to more advanced topics in finite group theory, and a full account of the applications to profinite groups. The author presents proofs of some very recent results and discusses open questions for further research. This self-contained account is accessible to research students, but will interest all research workers in group theory.
The Woods Hole trace formula is a Lefschetz fixed-point theorem for coherent cohomology on algebraic varieties. It leads to a version of the sheaves-functions dictionary of Deligne, relating characteristic-p-valued functions on the rational points of varieties over finite fields to coherent modules equipped with a Frobenius structure. This book begins with a short introduction to the homological theory of crystals of Bockle and Pink with the aim of introducing the sheaves-functions dictionary as quickly as possible, illustrated with elementary examples and classical applications. Subsequently, the theory and results are expanded to include infinite coefficients, L-functions, and applications to special values of Goss L-functions and zeta functions. Based on lectures given at the Morningside Center in Beijing in 2013, this book serves as both an introduction to the Woods Hole trace formula and the sheaves-functions dictionary, and to some advanced applications on characteristic p zeta values.
This comprehensive monograph is ideal for established researchers in the field and also graduate students who wish to learn more about the subject. The text is made accessible to a broad audience as it does not require any knowledge of Lie groups and only a limited knowledge of differential geometry. The author's primary emphasis is on potential theory on the hyperbolic ball, but many other relevant results for the hyperbolic upper half-space are included both in the text and in the end-of-chapter exercises. These exercises expand on the topics covered in the chapter and involve routine computations and inequalities not included in the text. The book also includes some open problems, which may be a source for potential research projects.
This study of graded rings includes the first systematic account of the graded Grothendieck group, a powerful and crucial invariant in algebra which has recently been adopted to classify the Leavitt path algebras. The book begins with a concise introduction to the theory of graded rings and then focuses in more detail on Grothendieck groups, Morita theory, Picard groups and K-theory. The author extends known results in the ungraded case to the graded setting and gathers together important results which are currently scattered throughout the literature. The book is suitable for advanced undergraduate and graduate students, as well as researchers in ring theory.
A careful and accessible exposition of a functional analytic approach to initial boundary value problems for semilinear parabolic differential equations, with a focus on the relationship between analytic semigroups and initial boundary value problems. This semigroup approach is distinguished by the extensive use of the ideas and techniques characteristic of the recent developments in the theory of pseudo-differential operators, one of the most influential works in the modern history of analysis. Complete with ample illustrations and additional references, this new edition offers both streamlined analysis and better coverage of important examples and applications. A powerful method for the study of elliptic boundary value problems, capable of further extensive development, is provided for advanced undergraduates or beginning graduate students, as well as mathematicians with an interest in functional analysis and partial differential equations.
The language of ends and (co)ends provides a natural and general way of expressing many phenomena in category theory, in the abstract and in applications. Yet although category-theoretic methods are now widely used by mathematicians, since (co)ends lie just beyond a first course in category theory, they are typically only used by category theorists, for whom they are something of a secret weapon. This book is the first systematic treatment of the theory of (co)ends. Aimed at a wide audience, it presents the (co)end calculus as a powerful tool to clarify and simplify definitions and results in category theory and export them for use in diverse areas of mathematics and computer science. It is organised as an easy-to-cite reference manual, and will be of interest to category theorists and users of category theory alike.
This is the first book to link the mod 2 Steenrod algebra, a classical object of study in algebraic topology, with modular representations of matrix groups over the field F of two elements. The link is provided through a detailed study of Peterson's `hit problem' concerning the action of the Steenrod algebra on polynomials, which remains unsolved except in special cases. The topics range from decompositions of integers as sums of 'powers of 2 minus 1', to Hopf algebras and the Steinberg representation of GL(n, F). Volume 1 develops the structure of the Steenrod algebra from an algebraic viewpoint and can be used as a graduate-level textbook. Volume 2 broadens the discussion to include modular representations of matrix groups.
Markov chains and hidden Markov chains have applications in many areas of engineering and genomics. This book provides a basic introduction to the subject by first developing the theory of Markov processes in an elementary discrete time, finite state framework suitable for senior undergraduates and graduates. The authors then introduce semi-Markov chains and hidden semi-Markov chains, before developing related estimation and filtering results. Genomics applications are modelled by discrete observations of these hidden semi-Markov chains. This book contains new results and previously unpublished material not available elsewhere. The approach is rigorous and focused on applications.
"Discrete quantum walks are quantum analogues of classical random walks. They are an important tool in quantum computing and a number of algorithms can be viewed as discrete quantum walks, in particular Grover's search algorithm. These walks are constructed on an underlying graph, and so there is a relation between properties of walks and properties of the graph. This book studies the mathematical problems that arise from this connection, and the different classes of walks that arise. Written at a level suitable for graduate students in mathematics, the only prerequisites are linear algebra and basic graph theory; no prior knowledge of physics is required. The text serves as an introduction to this important and rapidly developing area for mathematicians and as a detailed reference for computer scientists and physicists working on quantum information theory"--
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.