Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
New methods for tackling a variety of questions in algebraic geometry were addressed at successive conferences held in Trieste and Bergen. This collection represents a development of the work conducted at the conferences; the Editors have taken the opportunity to mould the papers into a cohesive volume.
The work of Hermann Weyl has had a lasting influence on areas of mathematics such as topological groups, Lie groups and representation theory, harmonic analysis, and on the foundations of mathematics itself. In this volume leading experts outline the connections between Weyl's theorems and up-to-date results in many contemporary topics.
Presenting papers by researchers in transcendental complex dynamics and complex analysis, this book is written in honour of Noel Baker, a leading exponent of transcendental dynamics. The papers describe the state of the art in this subject, with many new results and comprehensive survey articles. This book is essential reading for students and researchers in complex dynamics and complex analysis.
This volume provides a systematic presentation of the theory of differential tensor algebras and their categories of modules. It involves reduction techniques which have proved to be very useful in the development of representation theory of finite dimensional algebras. The main results obtained with these methods are presented in an elementary and self contained way. The authors provide a fresh point of view of well known facts on tame and wild differential tensor algebras, on tame and wild algebras, and on their modules. But there are also some new results and some new proofs. Their approach presents a formal alternative to the use of bocses (bimodules over categories with coalgebra structure) with underlying additive categories and pull-back reduction constructions. Professional mathematicians working in representation theory and related fields, and graduate students interested in homological algebra will find much of interest in this book.
An in-depth coverage of selected areas of graph theory, focusing on symmetry properties of graphs. This second edition expands on several topics found in the first and is ideal for students wishing to learn the basic concepts. The broad collection of results provided also makes this book valuable to researchers.
This collection of expository articles provides an overview of the major renaissance happening today in the study of locally compact groups and their many connections to other areas of mathematics, including geometric group theory, measured group theory and rigidity of lattices. For researchers and graduate students.
This volume arises from the 2017 edition of the long-running 'Groups St Andrews' conference series and consists of expository papers from leading researchers in all areas of group theory. It provides a snapshot of the state-of-the-art in the field, and it will be a valuable resource for researchers and graduate students.
Showcasing the achievements of young Russian researchers in mathematics, this book contains a substantial number of new results. Topics covered include algebraic geometry over Lie groups, cohomology of face rings, the Borsuk partition problem, embedding and knotting of manifolds in Euclidean spaces, and Maxwellian and Botzmann distributions.
Using modern methods from computational group theory and representation theory, this book addresses a classical topic in the theory of complex functions. It is suitable for graduate students and researchers.
This is a collection of graduate-level introductions to five areas of current research interest in orthogonal polynomials and special functions. It derives from the OPSF-S6 Summer School lectures given by international authorities and has been carefully edited into a coherent whole, with examples and exercises.
This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on models of dynamical processes affected by white noise, which are described by partial differential equations such as the reaction-diffusion equations or Navier-Stokes equations. Besides existence and uniqueness questions, special attention is paid to the asymptotic behaviour of the solutions, to invariant measures and ergodicity. Some of the results found here are presented for the first time. For all whose research interests involve stochastic modelling, dynamical systems, or ergodic theory, this book will be an essential purchase.
Line graphs have the property that their least eigenvalue is greater than or equal to -2, a property shared by generalized line graphs and a finite number of so-called exceptional graphs. This book deals with all these families of graphs in the context of their spectral properties. The authors discuss the three principal techniques that have been employed, namely 'forbidden subgraphs', 'root systems' and 'star complements'. They bring together the major results in the area, including the recent construction of all the maximal exceptional graphs. Technical descriptions of these graphs are included in the appendices, while the bibliography provides over 250 references. This will be an important resource for all researchers with an interest in algebraic graph theory.
The study of geodesic flows on homogenous spaces is an area of research that has yielded some fascinating developments. This book, first published in 2000, focuses on many of these, and one of its highlights is an elementary and complete proof (due to Margulis and Dani) of Oppenheim's conjecture. Also included here: an exposition of Ratner's work on Raghunathan's conjectures; a complete proof of the Howe-Moore vanishing theorem for general semisimple Lie groups; a new treatment of Mautner's result on the geodesic flow of a Riemannian symmetric space; Mozes' result about mixing of all orders and the asymptotic distribution of lattice points in the hyperbolic plane; Ledrappier's example of a mixing action which is not a mixing of all orders. The treatment is as self-contained and elementary as possible. It should appeal to graduate students and researchers interested in dynamical systems, harmonic analysis, differential geometry, Lie theory and number theory.
Contains selected papers from the international conference Groups - St Andrews 1985, The book will prove invaluable to both experienced researchers and new postgraduates whose interests involve group theory.
This book, which is almost entirely devoted to unbounded operators, gives a unified treatment of the contemporary local spectral theory for unbounded closed operators on a complex Banach space. While the main part of the book is original, necessary background materials provided. There are some completely new topics treated, such as the complete spectral duality theory with the first comprehensive proof of the predual theorem, in two different versions. Also covered are spectral resolvents of various kinds (monotomic, strongly monotonic, almost localized, analytically invariant), and spectral decompositions with respect to the identity. The book concludes with an extensive reference list, including many papers published in the People's Republic of China, here brought to the attention of Western mathematicians for the first time. Pure mathematicians, especially those working in operator theory and functional analysis, will find this book of interest.
This is an introduction to non-commutative geometry, with special emphasis on those cases where the structure algebra, which defines the geometry, is an algebra of matrices over the complex numbers. Applications to elementary particle physics are also discussed. This second edition is thoroughly revised and includes new material on reality conditions and linear connections plus examples from Jordanian deformations and quantum Euclidean spaces. Only some familiarity with ordinary differential geometry and the theory of fibre bundles is assumed, making this book accessible to graduate students and newcomers to this field.
Ever since the seminal work of Goppa on algebraic-geometry codes, rational points on algebraic curves over finite fields have been an important research topic for algebraic geometers and coding theorists. The focus in this application of algebraic geometry to coding theory is on algebraic curves over finite fields with many rational points (relative to the genus). Recently, the authors discovered another important application of such curves, namely to the construction of low-discrepancy sequences. These sequences are needed for numerical methods in areas as diverse as computational physics and mathematical finance. This has given additional impetus to the theory of, and the search for, algebraic curves over finite fields with many rational points. This book aims to sum up the theoretical work on algebraic curves over finite fields with many rational points and to discuss the applications of such curves to algebraic coding theory and the construction of low-discrepancy sequences.
These notes give a fairly elementary introduction to the local theory of differentiable mappings. Sard's Theorem and the Preparation Theorem of Malgrange and Mather are the basic tools and these are proved first. There follows a number of illustrations including: the local part of Whitney's Theorem on mappings of the plane into the plane, quadratic differentials, the Instability Theorem of Thom, one of Mather's theorems on finite determinacy and a glimpse of the theory of Toujeron. The later part of the book develops Mather's theory of unfoldings of singularities. Its application to Catastrophe theory is explained and the Elementary Catastrophes are illustrated by many pictures. The book is suitable as a text for courses to graduates and advanced undergraduates but may also be of interest to mathematical biologists and economists.
Information propagation through peer-to-peer systems, online social systems, wireless mobile ad hoc networks and other modern structures can be modelled as an epidemic on a network of contacts. Understanding how epidemic processes interact with network topology allows us to predict ultimate course, understand phase transitions and develop strategies to control and optimise dissemination. This book is a concise introduction for applied mathematicians and computer scientists to basic models, analytical tools and mathematical and algorithmic results. Mathematical tools introduced include coupling methods, Poisson approximation (the Stein-Chen method), concentration inequalities (Chernoff bounds and Azuma-Hoeffding inequality) and branching processes. The authors examine the small-world phenomenon, preferential attachment, as well as classical epidemics. Each chapter ends with pointers to the wider literature. An ideal accompaniment for graduate courses, this book is also for researchers (statistical physicists, biologists, social scientists) who need an efficient guide to modern approaches to epidemic modelling on networks.
In this book the authors present their research into the foundations of the theory of Polish groups and the associated orbit equivalence relations. The particular case of locally compact groups has long been studied in many areas of mathematics. Non-locally compact Polish groups occur naturally as groups of symmetries in such areas as logic (especially model theory), ergodic theory, group representations, and operator algebras. Some of the topics covered here are: topological realizations of Borel measurable actions; universal actions; applications to invariant measures; actions of the infinite symmetric group in connection with model theory (logic actions); dichotomies for orbit spaces (including Silver, Glimm-Effros type dichotomies and the topological Vaught conjecture); descriptive complexity of orbit equivalence relations; definable cardinality of orbit spaces.
These are notes deriving from lecture courses given by the authors in 1973 at Westfield College, London. The lectures described the connection between the theory of t-designs on the one hand, and graph theory on the other. A feature of this book is the discussion of then-recent construction of t-designs from codes. Topics from a wide range of finite combinatorics are covered and the book will interest all scholars of combinatorial theory.
Riemann surfaces is a thriving area of mathematics with applications to hyperbolic geometry, complex analysis, conformal dynamics, discrete groups, algebraic curves and more. This collection of articles presents original research and expert surveys of important related topics, making the field accessible to research workers, graduate students and teachers.
This book, first published in 2000, is devoted to developments in symbolic dynamics. The opening chapters introduce systems of both 'low' and 'high' complexity. The later chapters go on to deal with more specialised topics including ergodic theory, number theory, and one-dimensional dynamics.
This book consists of nine survey papers by internationally renowned mathematicians. It will be of interest to researchers in combinatorics, from graduate students who want an overview of several areas to advanced researchers who want to have an in-depth analysis of recent developments.
A comprehensive tour across differential geometry, geometric analysis and differential topology, this graduate-level text touches on topics as diverse as Ricci and mean curvature flow, geometric invariant theory, Alexandrov spaces, almost formality, prescribed Ricci curvature, and Kahler and Sasaki geometry. A joy to the expert and novice alike.
There is now a large body of theory concerning algebraic varieties over finite fields, and many conjectures exist in this area that are of great interest to researchers in number theory and algebraic geometry. This book is concerned with the arithmetic of diagonal hypersurfaces over finite fields, with special focus on the Tate conjecture and the Lichtenbaum-Milne formula for the central value of the L-function. It combines theoretical and numerical work, and includes tables of Picard numbers. Although this book is aimed at experts, the authors have included some background material to help non-specialists gain access to the results.
A mixture of surveys and original articles that span the theory of Zd actions.
This is a clear, accessible and up-to-date exposition of modular representation theory of finite groups from a character-theoretic viewpoint. It is aimed at graduate students, with previous knowledge of ordinary character theory, and researchers interested in the representation theory of finite groups.
The role of representation theory in algebra is an important one and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. Researchers into group theory, representation theory, or both, will find that this book has much to offer.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.