Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
Combining mathematical theory, physical principles, and engineering problems, Generalized Calculus with Applications to Matter and Forces examines generalized functions, including the Heaviside unit jump and the Dirac unit impulse and its derivatives of all orders, in one and several dimensions. The text introduces the two main approaches to generalized functions: (1) as a nonuniform limit of a family of ordinary functions, and (2) as a functional over a set of test functions from which properties are inherited. The second approach is developed more extensively to encompass multidimensional generalized functions whose arguments are ordinary functions of several variables. As part of a series of books for engineers and scientists exploring advanced mathematics, Generalized Calculus with Applications to Matter and Forces presents generalized functions from an applied point of view, tackling problem classes such as:Gauss and StokesΓÇÖ theorems in the differential geometry, tensor calculus, and theory of potential fieldsSelf-adjoint and non-self-adjoint problems for linear differential equations and nonlinear problems with large deformationsMultipolar expansions and GreenΓÇÖs functions for elastic strings and bars, potential and rotational flow, electro- and magnetostatics, and moreThis third volume in the series Mathematics and Physics for Science and Technology is designed to complete the theory of functions and its application to potential fields, relating generalized functions to broader follow-on topics like differential equations. Featuring step-by-step examples with interpretations of results and discussions of assumptions and their consequences, Generalized Calculus with Applications to Matter and Forces enables readers to construct mathematicalΓÇôphysical models suited to new observations or novel engineering devices.
Building on the authorΓÇÖs previous book in the series, Complex Analysis with Applications to Flows and Fields (CRC Press, 2010), Transcendental Representations with Applications to Solids and Fluids focuses on four infinite representations: series expansions, series of fractions for meromorphic functions, infinite products for functions with infinitely many zeros, and continued fractions as alternative representations. This book also continues the application of complex functions to more classes of fields, including incompressible rotational flows, compressible irrotational flows, unsteady flows, rotating flows, surface tension and capillarity, deflection of membranes under load, torsion of rods by torques, plane elasticity, and plane viscous flows. The two books together offer a complete treatment of complex analysis, showing how the elementary transcendental functions and other complex functions are applied to fluid and solid media and force fields mainly in two dimensions.The mathematical developments appear in odd-numbered chapters while the physical and engineering applications can be found in even-numbered chapters. The last chapter presents a set of detailed examples. Each chapter begins with an introduction and concludes with related topics. Written by one of the foremost authorities in aeronautical/aerospace engineering, this self-contained book gives the necessary mathematical background and physical principles to build models for technological and scientific purposes. It shows how to formulate problems, justify the solutions, and interpret the results.
Presents an overview of the mathematical modeling of physical phenomena and engineering processes. This volume emphasizes how similar methods can be applied to analogous problems in different areas with specific interpretations. It includes problems with solutions as well as examples and practical applications.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.