Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This book presents four survey articles on different topics in mathematical analysis that are closely linked to concepts and applications in physics.
This monograph presents necessary and sufficient conditions for completeness of the linear span of eigenvectors and generalized eigenvectors of operators that admit a characteristic matrix function in a Banach space setting. Classical conditions for completeness based on the theory of entire functions are further developed for this specific class of operators. The classes of bounded operators that are investigated include trace class and Hilbert-Schmidt operators, finite rank perturbations of Volterra operators, infinite Leslie operators, discrete semi-separable operators, integral operators with semi-separable kernels, and period maps corresponding to delay differential equations. The classes of unbounded operators that are investigated appear in a natural way in the study of infinite dimensional dynamical systems such as mixed type functional differential equations, age-dependent population dynamics, and in the analysis of the Markov semigroup connected to the recently introduced zig-zag process.
This collection presents various approaches to analytic problems that arise in the context of singular spaces. It contains articles offering introductions to various pseudodifferential calculi and discussions of relations between them, plus invited papers from mathematicians who have made significant contributions to this field
This book offers a complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.
The volume is dedicated to Lev Sakhnovich, who made fundamental contributions in operator theory and related topics. Besides bibliographic material, it includes a number of selected papers related to Lev Sakhnovich's research interests. The papers are related to operator identities, moment problems, random matrices and linear stochastic systems.
Boris Pavlov (1936-2016), to whom this volume is dedicated, was a prominent specialist in analysis, operator theory, and mathematical physics.
Topics include Columbeau algebras, ultra-distributions, partial differential equations, micro-local analysis, harmonic analysis, global analysis, geometry, quantization, mathematical physics, and time-frequency analysis.
Topics include Columbeau algebras, ultra-distributions, partial differential equations, micro-local analysis, harmonic analysis, global analysis, geometry, quantization, mathematical physics, and time-frequency analysis.
Uncertainty principles for time-frequency operators.- 1. Introduction.- 2. Sampling results for time-frequency transformations.- 3. Uncertainty principles for exact Gabor and wavelet frames.- References.- Distribution of zeros of matrix-valued continuous analogues of orthogonal polynomials.- 1. Preliminary results.- 1.1. Matrix-valued Krein functions of the first and second kinds.- 1.2. Partitioned integral operators.- 2. Orthogonal operator-valued polynomials.- 2.1. Stein equations for operators.- 2.2. Zeros of orthogonal polynomials.- 2.3. On Toeplitz matrices with operator entries.- 3. Zeros of mat rix-valued Krein functions.- 3.1 On Wiener-Hopf operators.- 3.2. Proof of the main theorem.- References.- The band extension of the real line as a limit of discrete band extensions, II. The entropy principle.- 0. Introduction.- I. Preliminaries.- II. Main results.- References.- Weakly positive matrix measures, generalized Toeplitz forms, and their applications to Hankel and Hilbert transform operators.- 1. Lifting properties of generalized Toeplitz forms and weakly positive matrix measures.- 2. The GBT and the theorems of Helson-Szeg¿ and Nehari.- 3. GNS construction, Wold decomposition and abstract lifting theorems.- 4. Multiparameter and n-conditional lifting theorems, the A-A-K theorem and applications in several variables.- References.- Reduction of the abstract four block problem to a Nehari problem.- 0. Introduction.- 1. Main theorems.- 2. Proofs of the main theorems.- References.- The state space method for integro-differential equations of Wiener-Hopf type with rational matrix symbols.- 1. Introduction and main theorems.- 2. Preliminaries on matrix pencils.- 3. Singular differential equations on the full-line.- 4. Singular differential equations on the half-line.- 5. Preliminaries on realizations.- 6. Proof of theorem 1.1.- 7. Proofs of theorems 1.2 and 1.3.- 8. An example.- References.- Symbols and asymptotic expansions.- 0. Introduction.- I. Smooth symbols on Rn.- II. Piecewise smooth symbols on T.- III. Piecewise smooth symbols on Rn.- IV. Symbols discontinuous across a hyperplane in Rn ¿Rn.- References.- Program of Workshop.
This book presents novel results by participants of the conference "Control theory of infinite-dimensional systems" that took place in January 2018 at the FernUniversitat in Hagen.
This book presents a collection of expository and research papers on various topics in matrix and operator theory, contributed by several experts on the occasion of Albrecht Boettcher's 60th birthday.
This book defines and examines the counterpart of Schur functions and Schur analysis in the slice hyperholomorphic setting. It is organized into three parts: the first introduces readers to classical Schur analysis, while the second offers background material on quaternions, slice hyperholomorphic functions, and quaternionic functional analysis.
This volume collects a selected number of papers presented at the International Workshop on Operator Theory and its Applications (IWOTA) held in July 2014 at Vrije Universiteit in Amsterdam.
This volume is dedicated to the eminent Georgian mathematician Roland Duduchava on the occasion of his 70th birthday. It presents recent results on Toeplitz, Wiener-Hopf, and pseudodifferential operators, boundary value problems, operator theory, approximation theory, and reflects the broad spectrum of Roland Duduchava's research.
Written in honor of Victor Havin (1933-2015), this volume presents a collection of surveys and original papers on harmonic and complex analysis, function spaces and related topics, authored by internationally recognized experts in the fields.
This book gives an excellent and up-to-date overview on the convergence and joint progress in the fields of Generalized Functions and Fourier Analysis, notably in the core disciplines of pseudodifferential operators, microlocal analysis and time-frequency analysis.
This monograph discusses covariant Schroedinger operators and their heat semigroups on noncompact Riemannian manifolds and aims to fill a gap in the literature, given the fact that the existing literature on Schroedinger operators has mainly focused on scalar Schroedinger operators on Euclidean spaces so far.
The main focus is on the analytic counterpart of these problems, which amounts to computing projections onto subspaces of a Hilbert space of p x 1 vector valued functions with an inner product that is defined in terms of the p x p matrix valued spectral density of the process.
This book is a comprehensive exposition of the theory of boundary integral equations for single and double layer potentials on curves with exterior and interior cusps. Three chapters cover harmonic potentials, and the final chapter treats elastic potentials.
The volume is dedicated to Lev Sakhnovich, who made fundamental contributions in operator theory and related topics. Besides bibliographic material, it includes a number of selected papers related to Lev Sakhnovich's research interests. The papers are related to operator identities, moment problems, random matrices and linear stochastic systems.
This volume presents self-contained survey articles on modern research areas written by experts in their fields. The articles are accessible to graduate students and researches from other fields of mathematics or physics while also being of value to experts, as they report on the state of the art in the respective fields.
This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research.Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability.The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.
Written in honor of Victor Havin (1933-2015), this volume presents a collection of surveys and original papers on harmonic and complex analysis, function spaces and related topics, authored by internationally recognized experts in the fields.
The main focus is on the analytic counterpart of these problems, which amounts to computing projections onto subspaces of a Hilbert space of p x 1 vector valued functions with an inner product that is defined in terms of the p x p matrix valued spectral density of the process.
This volume is devoted to Joseph A. (Joe) Ball's contributions to operator theory and its applications and in celebration of his seventieth birthday.Joe Ball's career spans over four and a half decades, starting with his work on model theory and related topics for non-contractions and operators on multiply connected domains. Later on, more applied operator theory themes appeared in his work, involving factorization and interpolation for operator-valued functions, with extensive applications in system and control theory. He has worked on nonlinear control, time-varying systems and, more recently, on multidimensional systems and noncommutative H8-theory on the unit ball and polydisk, and more general domains, and these are only the main themes in his vast oeuvre.Fourteen research papers constitute the core of this volume, written by mathematicians who have collaborated with Joe or have been influenced by his vast mathematical work. A curriculum vitae, a publications list and a list of Joe Ball's PhD students are included in this volume, as well as personal reminiscences by colleagues and friends. Contributions by Yu. M. Arlinskii, S. Hassi, M. Augat, J. W. Helton, I. Klep, S. McCullough, S. Balasubramanian, U. Wijesooriya, N. Cohen, Q. Fang, S. Gorai, J. Sarkar, G. J. Groenewald, S. ter Horst, J. Jaftha, A. C. M. Ran, M.A. Kaashoek, F. van Schagen, A. Kheifets, Z. A. Lykova, N. J. Young, A. E. Ajibo, R. T. W. Martin, A. Ramanantoanina, M.-J. Y. Ou, H. J. Woerdeman, A. van der Schaft, A. Tannenbaum, T. T. Georgiou, J. O. Deasy and L. Norton.
Topics include multivariable operator theory, operator theory on indefinite metric spaces (Krein and Pontryagin spaces) and its applications, spectral theory with applications to differential operators, the geometry of Banach spaces, scattering and time varying linear systems, and wavelets and coherent states.
The volume contains contributions from authors from a large variety of countries on different aspects of partial differential equations, such as evolution equations and estimates for their solutions, control theory, inverse problems, nonlinear equations, elliptic theory on singular domains, numerical approaches.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.