Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This volume is based on the successful 6th China Japan Seminar on number theory that was held in Shanghai Jiao Tong University in August 2011. It is a compilation of survey papers as well as original works by distinguished researchers in their respective fields. The topics range from traditional analytic number theory additive problems, divisor problems, Diophantine equations to elliptic curves and automorphic L-functions. It contains new developments in number theory and the topics complement the existing two volumes from the previous seminars which can be found in the same book series.
This volume provides a systematic survey of almost all the equivalent assertions to the functional equations - zeta symmetry - which zeta-functions satisfy, thus streamlining previously published results on zeta-functions. The equivalent relations are given in the form of modular relations in Fox H-function series, which at present include all that have been considered as candidates for ingredients of a series. The results are presented in a clear and simple manner for readers to readily apply without much knowledge of zeta-functions.This volume aims to keep a record of the 150-year-old heritage starting from Riemann on zeta-functions, which are ubiquitous in all mathematical sciences, wherever there is a notion of the norm. It provides almost all possible equivalent relations to the zeta-functions without requiring a reader's deep knowledge on their definitions. This can be an ideal reference book for those studying zeta-functions.
Based on the successful 7th China-Japan seminar on number theory conducted in Kyushu University, this volume is a compilation of survey and semi-survey type of papers by the participants of the seminar.
Contains contributions of principal speakers of the symposium on geometry and analysis of automorphic forms of several variables, held in September 2009 at Tokyo, Japan, in honor of Takayuki Oda's 60th birthday. This title presents both research and survey articles in the fields that are the main themes of his work.
Aims at collecting survey papers which give broad perspectives of various aspects of number theory. This work introduces a fresh direction of research on analytic number theory - quantitative theory of some surfaces. It describes generalized modular forms (GMF) which has some applications in conformal field theory.
This monograph provides a brief exposition of automorphic forms of weight 1 and their applications to arithmetic, especially to Galois representations.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.