We a good story
Quick delivery in the UK

Books in the Springer Optimization and Its Applications series

Filter
Filter
Sort bySort Series order
  • by Bin Li, Kok Lay Teo, Changjun Yu & et al.
    £104.49

  • Save 18%
    by Loic Brevault, Mathieu Balesdent & Jerome Morio
    £98.99

    Spotlighting the field of Multidisciplinary Design Optimization (MDO), this book illustrates and implements state-of-the-art methodologies within the complex process of aerospace system design under uncertainties.

  • Save 14%
    by Urmila M. Diwekar
    £38.49 - 50.49

  • by Neculai Andrei
    £114.49

    Two approaches are known for solving large-scale unconstrained optimization problems-the limited-memory quasi-Newton method (truncated Newton method) and the conjugate gradient method.

  • Save 18%
    by Michal Kisielewicz
    £82.49

    This book is among the first concise presentations of the set-valued stochastic integration theory as well as its natural applications, as well as the first to contain complex approach theory of set-valued stochastic integrals.

  • Save 18%
    by Philine Schiewe
    £90.49

    This book is one of the first to include an extensive discussion of integrated public transport planning.

  • by Hideyuki Azegami
    £114.49

    Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense.

  • Save 15%
    by Yuri Sachkov
    £46.49

    This text is an enhanced, English version of the Russian edition, published in early 2021 and is appropriate for an introductory course in geometric control theory. The concise presentation provides an accessible treatment of the subject for advanced undergraduate and graduate students in theoretical and applied mathematics, as well as to experts in classic control theory for whom geometric methods may be introduced. Theory is accompanied by characteristic examples such as stopping a train, motion of mobile robot, Euler elasticae, Dido's problem, and rolling of the sphere on the plane. Quick foundations to some recent topics of interest like control on Lie groups and sub-Riemannian geometry are included. Prerequisites include only a basic knowledge of calculus, linear algebra, and ODEs; preliminary knowledge of control theory is not assumed. The applications problems-oriented approach discusses core subjects and encourages the reader to solve related challenges independently. Highly-motivated readers can acquire working knowledge of geometric control techniques and progress to studying control problems and more comprehensive books on their own. Selected sections provide exercises to assist in deeper understanding of the material.Controllability and optimal control problems are considered for nonlinear nonholonomic systems on smooth manifolds, in particular, on Lie groups. For the controllability problem, the following questions are considered: controllability of linear systems, local controllability of nonlinear systems, Nagano-Sussmann Orbit theorem, Rashevskii-Chow theorem, Krener's theorem. For the optimal control problem, Filippov's theorem is stated, invariant formulation of Pontryagin maximum principle on manifolds is given, second-order optimality conditions are discussed, and the sub-Riemannian problem is studied in detail. Pontryagin maximum principle is proved for sub-Riemannian problems, solution to the sub-Riemannian problems on the Heisenberg group, the group of motions of the plane, and the Engel group is described.

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.