Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This book offers a guided tour through the mathematical habitat of noncommutative geometry a la Connes, deliberately unveiling the answers to these questions. After a brief preface flashing the panorama of the spectral approach, a concise primer on spectral triples is given.
In this work the question whether noncommutative geometry allows for supersymmetric theories is addressed.
This book explains the basic ideas of supergravity, collecting the relevant formulae in one place. Covers vielbein formulation of gravity; supergravities in four dimensions; superalgebras and supermultiplets; supergravities in higher dimensions and more.
This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem.
This book provides self-contained proofs of the existence of ground states of several interaction models in quantum field theory. We show the existence of the ground state of the Pauli-Fierz mode, the Nelson model, and the spin-boson model, and several kinds of proofs of the existence of ground states are explicitly provided.
In this book, a statistical mechanical interpretation of AIT is introduced while explaining the basic notions and results of AIT to the reader who has an acquaintance with an elementary theory of computation. A simplification of the setting of AIT is the noiseless source coding in information theory.
This is the first book on elliptic quantum groups, i.e., quantum groups associated to elliptic solutions of the Yang-Baxter equation.
There are basically two notions of integrability: classical integrability and quantum integrability. Usually, it is not considered systematic to perform such a deformation, and one must study systems case by case and show the integrability of the deformed systems by constructing the associated Lax pair or action-angle variables.
This book focuses on the Symmetric Informationally Complete quantum measurements (SICs) in dimensions 2 and 3, along with one set of SICs in dimension 8.
The isomonodromic deformation equations such as the Painleve and Garnier systems are an important class of nonlinear differential equations in mathematics and mathematical physics. In choosing the suitable approximation problem, the linear differential equations give the Lax pair for some isomonodromic equations.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.