We a good story
Quick delivery in the UK

Books in the Synthesis Lectures on Biomedical Engineering series

Filter
Filter
Sort bySort Series order
  • by Jay Goldberg
    £29.49

    The biomedical engineering senior capstone design course is probably the most important course taken by undergraduate biomedical engineering students. It provides them with the opportunity to apply what they have learned in previous years; develop their communication (written, oral, and graphical), interpersonal (teamwork, conflict management, and negotiation), project management, and design skills; and learn about the product development process. It also provides students with an understanding of the economic, financial, legal, and regulatory aspects of the design, development, and commercialization of medical technology. The capstone design experience can change the way engineering students think about technology, society, themselves, and the world around them. It gives them a short preview of what it will be like to work as an engineer. It can make them aware of their potential to make a positive contribution to health care throughout the world and generate excitement for and pride in the engineering profession. Working on teams helps students develop an appreciation for the many ways team members, with different educational, political, ethnic, social, cultural, and religious backgrounds, look at problems. They learn to value diversity and become more willing to listen to different opinions and perspectives. Finally, they learn to value the contributions of nontechnical members of multidisciplinary project teams. Ideas for how to organize, structure, and manage a senior capstone design course for biomedical and other engineering students are presented here. These ideas will be helpful to faculty who are creating a new design course, expanding a current design program to more than the senior year, or just looking for some ideas for improving an existing course. Contents: I. Purpose, Goals, and Benefits / Why Our Students Need a Senior Capstone Design Course / Desired Learning Outcomes / Changing Student Attitudes, Perceptions, and Awarenesss / Senior Capstone Design Courses and Accreditation Board for Engineering and Technology Outcomes / II. Designing a Course to Meet Student Needs / Course Management and Required Deliverables / Projects and Project Teams / Lecture Topics / Intellectual Property Confidentiality Issues in Design Projects / III. Enhancing the Capstone Design Experience / Industry Involvement in Capstone Design Courses / Developing Business and Entrepreneurial Literacy / Providing Students with a Clinical Perspective / Service Learning Opportunities / Collaboration with Industrial Design Students / National Student Design Competitions / Organizational Support for Senior Capstone Design Courses / IV. Meeting the Changing Needs of Future Engineers / Capstone Design Courses and the Engineer of 2020

  • by Elisabeth Papazoglou
    £32.49

    This book aims to provide vital information about the growing field of bionanotechnology for undergraduate and graduate students, as well as working professionals in various fields. The fundamentals of nanotechnology are covered along with several specific bionanotechnology applications, including nanobioimaging and drug delivery which is a growing $100 billions industry. The uniqueness of the field has been brought out with unparalleled lucidity; a balance between important insight into the synthetic methods of preparing stable nano-structures and medical applications driven focus educates and informs the reader on the impact of this emerging field. Critical examination of potential threats followed by a current global outlook completes the discussion. In short, the book takes you through a journey from fundamentals to frontiers of bionanotechnology so that you can understand and make informed decisions on the impact of bionano on your career and business.

  • by Zahra Moussavi
    £29.49

    Breath sounds have long been important indicators of respiratory health and disease. Acoustical monitoring of respiratory sounds has been used by researchers for various diagnostic purposes. A few decades ago, physicians relied on their hearing to detect any symptomatic signs in respiratory sounds of their patients. However, with the aid of computer technology and digital signal processing techniques in recent years, breath sound analysis has drawn much attention because of its diagnostic capabilities. Computerized respiratory sound analysis can now quantify changes in lung sounds; make permanent records of the measurements made and produce graphical representations that help with the diagnosis and treatment of patients suffering from lung diseases. Digital signal processing techniques have been widely used to derive characteristics features of the lung sounds for both diagnostic and assessment of treatment purposes. Although the analytical techniques of signal processing are largely independent of the application, interpretation of their results on biological data, i.e. respiratory sounds, requires substantial understanding of the involved physiological system. This lecture series begins with an overview of the anatomy and physiology related to human respiratory system, and proceeds to advanced research in respiratory sound analysis and modeling, and their application as diagnostic aids. Although some of the used signal processing techniques have been explained briefly, the intention of this book is not to describe the analytical methods of signal processing but the application of them and how the results can be interpreted. The book is written for engineers with university level knowledge of mathematics and digital signal processing.

  • by John Enderle
    £32.49

    This short book provides basic information about bioinstrumentation and electric circuit theory. Many biomedical instruments use a transducer or sensor to convert a signal created by the body into an electric signal. Our goal here is to develop expertise in electric circuit theory applied to bioinstrumentation. We begin with a description of variables used in circuit theory, charge, current, voltage, power and energy. Next, Kirchhoff's current and voltage laws are introduced, followed by resistance, simplifications of resistive circuits and voltage and current calculations. Circuit analysis techniques are then presented, followed by inductance and capacitance, and solutions of circuits using the differential equation method. Finally, the operational amplifier and time varying signals are introduced. This lecture is written for a student or researcher or engineer who has completed the first two years of an engineering program (i.e., 3 semesters of calculus and differential equations). A considerable effort has been made to develop the theory in a logical manner-developing special mathematical skills as needed. At the end of the short book is a wide selection of problems, ranging from simple to complex.

  • by John Enderle
    £32.49

    This is the third in a series of short books on probability theory and random processes for biomedical engineers. This book focuses on standard probability distributions commonly encountered in biomedical engineering. The exponential, Poisson and Gaussian distributions are introduced, as well as important approximations to the Bernoulli PMF and Gaussian CDF. Many important properties of jointly Gaussian random variables are presented. The primary subjects of the final chapter are methods for determining the probability distribution of a function of a random variable. We first evaluate the probability distribution of a function of one random variable using the CDF and then the PDF. Next, the probability distribution for a single random variable is determined from a function of two random variables using the CDF. Then, the joint probability distribution is found from a function of two random variables using the joint PDF and the CDF. The aim of all three books is as an introduction to probability theory. The audience includes students, engineers and researchers presenting applications of this theory to a wide variety of problems-as well as pursuing these topics at a more advanced level. The theory material is presented in a logical manner-developing special mathematical skills as needed. The mathematical background required of the reader is basic knowledge of differential calculus. Pertinent biomedical engineering examples are throughout the text. Drill problems, straightforward exercises designed to reinforce concepts and develop problem solution skills, follow most sections.

  • by John Enderle
    £32.49

    This is the second in a series of three short books on probability theory and random processes for biomedical engineers. This volume focuses on expectation, standard deviation, moments, and the characteristic function. In addition, conditional expectation, conditional moments and the conditional characteristic function are also discussed. Jointly distributed random variables are described, along with joint expectation, joint moments, and the joint characteristic function. Convolution is also developed. A considerable effort has been made to develop the theory in a logical manner-developing special mathematical skills as needed. The mathematical background required of the reader is basic knowledge of differential calculus. Every effort has been made to be consistent with commonly used notation and terminology-both within the engineering community as well as the probability and statistics literature. The aim is to prepare students for the application of this theory to a wide variety of problems, as well give practicing engineers and researchers a tool to pursue these topics at a more advanced level. Pertinent biomedical engineering examples are used throughout the text.

  • by John Enderle
    £32.49

    This is the first in a series of short books on probability theory and random processes for biomedical engineers. This text is written as an introduction to probability theory. The goal was to prepare students, engineers and scientists at all levels of background and experience for the application of this theory to a wide variety of problems-as well as pursue these topics at a more advanced level. The approach is to present a unified treatment of the subject. There are only a few key concepts involved in the basic theory of probability theory. These key concepts are all presented in the first chapter. The second chapter introduces the topic of random variables. Later chapters simply expand upon these key ideas and extend the range of application. A considerable effort has been made to develop the theory in a logical manner-developing special mathematical skills as needed. The mathematical background required of the reader is basic knowledge of differential calculus. Every effort has been made to be consistent with commonly used notation and terminology-both within the engineering community as well as the probability and statistics literature. Biomedical engineering examples are introduced throughout the text and a large number of self-study problems are available for the reader.

  • by Gerald Miller
    £29.49

    The senses of human hearing and sight are often taken for granted by many individuals until they are lost or adversely affected. Millions of individuals suffer from partial or total hearing loss and millions of others have impaired vision. The technologies associated with augmenting these two human senses range from simple hearing aids to complex cochlear implants, and from (now commonplace) intraocular lenses to complex artificial corneas. The areas of human hearing and human sight will be described in detail with the associated array of technologies also described.

  • by Gerald Miller
    £29.49

    The replacement or augmentation of failing human organs with artificial devices and systems has been an important element in health care for several decades. Such devices as kidney dialysis to augment failing kidneys, artificial heart valves to replace failing human valves, cardiac pacemakers to reestablish normal cardiac rhythm, and heart assist devices to augment a weakened human heart have assisted millions of patients in the previous 50 years and offers lifesaving technology for tens of thousands of patients each year. Significant advances in these biomedical technologies have continually occurred during this period, saving numerous lives with cutting edge technologies. Each of these artificial organ systems will be described in detail in separate sections of this lecture.

  • by Charles Lessard
    £39.99

    This lecture book is intended to be an accessible and comprehensive introduction to random signal processing with an emphasis on the real-world applications of biosignals. Although the material has been written and developed primarily for advanced undergraduate biomedical engineering students it will also be of interest to engineers and interested biomedical professionals of any discipline seeking an introduction to the field. Within education, most biomedical engineering programs are aimed to provide the knowledge required of a graduate student while undergraduate programs are geared toward designing circuits and of evaluating only the cardiac signals. Very few programs teach the processes with which to evaluate brainwave, sleep, respiratory sounds, heart valve sounds, electromyograms, electro-oculograms, or random signals acquired from the body. The primary goal of this lecture book is to help the reader understand the time and frequency domain processes which may be used and to evaluate random physiological signals. A secondary goal is to learn the evaluation of actual mammalian data without spending most the time writing software programs. This publication utilizes "e;DADiSP"e;, a digital signal processing software, from the DSP Development Corporation.

  • by Ilias Maglogiannis
    £32.49

    E-health is closely related with networks and telecommunications when dealing with applications of collecting or transferring medical data from distant locations for performing remote medical collaborations and diagnosis. In this book we provide an overview of the fields of image and signal processing for networked and distributed e-health applications and their supporting technologies. The book is structured in 10 chapters, starting the discussion from the lower end, that of acquisition and processing of biosignals and medical images and ending in complex virtual reality systems and techniques providing more intuitive interaction in a networked medical environment. The book also discusses networked clinical decision support systems and corresponding medical standards, WWW-based applications, medical collaborative platforms, wireless networking, and the concepts of ambient intelligence and pervasive computing in electronic healthcare systems.

  • by John D. Enderle & Alireza Ghahari
    £45.49 - 50.99

  • by Faraz Oloumi, Rangaraj Rangayyan & Anna Ells
    £29.49 - 50.99

  • by Douglas Christensen
    £39.99

  • by Leif Sornmo & Luca Mainardi
    £32.49

  • by Fabio Babiloni & Fabrizio Fallani
    £29.49

    The present book illustrates the theoretical aspects of several methodologies related to the possibility of i) enhancing the poor spatial information of the electroencephalographic (EEG) activity on the scalp and giving a measure of the electrical activity on the cortical surface. ii) estimating the directional influences between any given pair of channels in a multivariate dataset. iii) modeling the brain networks as graphs. The possible applications are discussed in three different experimental designs regarding i) the study of pathological conditions during a motor task, ii) the study of memory processes during a cognitive task iii) the study of the instantaneous dynamics throughout the evolution of a motor task in physiological conditions. The main outcome from all those studies indicates clearly that the performance of cognitive and motor tasks as well as the presence of neural diseases can affect the brain network topology. This evidence gives the power of reflecting cerebral "states" or "traits" to the mathematical indexes derived from the graph theory. In particular, the observed structural changes could critically depend on patterns of synchronization and desynchronization - i.e. the dynamic binding of neural assemblies - as also suggested by a wide range of previous electrophysiological studies. Moreover, the fact that these patterns occur at multiple frequencies support the evidence that brain functional networks contain multiple frequency channels along which information is transmitted. The graph theoretical approach represents an effective means to evaluate the functional connectivity patterns obtained from scalp EEG signals. The possibility to describe the complex brain networks sub-serving different functions in humans by means of "numbers" is a promising tool toward the generation of a better understanding of the brain functions. Table of Contents: Introduction / Brain Functional Connectivity / Graph Theory / High-Resolution EEG / Cortical Networks in Spinal Cord Injured Patients / Cortical Networks During a Lifelike Memory Task / Application to Time-varying Cortical Networks / Conclusions

  • by Gérard Battail
    £34.49

    Heredity performs literal communication of immensely long genomes through immensely long time intervals. Genomes nevertheless incur sporadic errors referred to as mutations which have significant and often dramatic effects, after a time interval as short as a human life. How can faithfulness at a very large timescale and unfaithfulness at a very short one be conciliated? The engineering problem of literal communication has been completely solved during the second half of the XX-th century. Originating in 1948 from Claude Shannon's seminal work, information theory provided means to measure information quantities and proved that communication is possible through an unreliable channel (by means left unspecified) up to a sharp limit referred to as its capacity, beyond which communication becomes impossible. The quest for engineering means of reliable communication, named error-correcting codes, did not succeed in closely approaching capacity until 1993 when Claude Berrou and Alain Glavieuxinvented turbocodes. By now, the electronic devices which invaded our daily lives (e.g., CD, DVD, mobile phone, digital television) could not work without highly efficient error-correcting codes. Reliable communication through unreliable channels up to the limit of what is theoretically possible has become a practical reality: an outstanding achievement, however little publicized. As an engineering problem that nature solved aeons ago, heredity is relevant to information theory. The capacity of DNA is easily shown to vanish exponentially fast, which entails that error-correcting codes must be used to regenerate genomes so as to faithfully transmit the hereditary message. Moreover, assuming that such codes exist explains basic and conspicuous features of the living world, e.g., the existence of discrete species and their hierarchical taxonomy, the necessity of successive generations and even the trend of evolution towards increasingly complex beings. Providing geneticists with an introduction to information theory and error-correcting codes as necessary tools of hereditary communication is the primary goal of this book. Some biological consequences of their use are also discussed, and guesses about hypothesized genomic codes are presented. Another goal is prompting communication engineers to get interested in genetics and biology, thereby broadening their horizon far beyond the technological field, and learning from the most outstanding engineer: Nature. Table of Contents: Foreword / Introduction / A Brief Overview of Molecular Genetics / An Overview of Information Theory / More on Molecular Genetics / More on Information Theory / An Outline of Error-Correcting Codes / DNA is an Ephemeral Memory / A Toy Living World / Subsidiary Hypothesis, Nested System / Soft Codes / Biological Reality Conforms to the Hypotheses / Identification of Genomic Codes / Conclusion and Perspectives

  • by Jr. Coates
    £32.49

    In the past 50 years there has been an explosion of interest in the development of technologies whose end goal is to connect the human brain and/or nervous system directly to computers. Once the subject of science fiction, the technologies necessary to accomplish this goal are rapidly becoming reality. In laboratories around the globe, research is being undertaken to restore function to the physically disabled, to replace areas of the brain damaged by disease or trauma and to augment human abilities. Building neural interfaces and neuro-prosthetics relies on a diverse array of disciplines such as neuroscience, engineering, medicine and microfabrication just to name a few. This book presents a short history of neural interfacing (N.I.) research and introduces the reader to some of the current efforts to develop neural prostheses. The book is intended as an introduction for the college freshman or others wishing to learn more about the field. A resource guide is included for students along with a list of laboratories conducting N.I. research and universities with N.I. related tracks of study.Table of Contents: Neural Interfaces Past and Present / Current Neuroprosthesis Research / Conclusion / Resources for Students

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.