We a good story
Quick delivery in the UK

Books in the Woodhead Publishing Series in Electronic and Optical Materials series

Filter
Filter
Sort bySort Series order
  • - Architecture and Enhanced Performance
     
    £221.99

  • - Fundamentals, Devices, and Applications
     
    £263.49

  •  
    £186.49

    Barkhausen Noise for Nondestructive Testing and Materials Characterization in Low Carbon Steels presents a balanced approach, reviewing the disadvantages and advantages of using this technique and its comparison over other magnetic testing techniques. In addition, the book looks towards future applications of this technique, in particular, its industrial applications as a method for pipeline inspection, current advantages, and barriers to implementation. The book is suitable for materials scientists, researchers and engineers, and may be applicable for those working in metallurgical plants. Not only does the book discuss fundamentals, it reviews recent discoveries, such as the correlation between magnetocrystalline energy and Barkhausen noise, the modeling of this relationship, and the application of this technique in the characterization of magnetic materials. Provides detailed explanation for the stochastic and deterministic characteristics of Barkhausen noiseDiscusses principles of applying Barkhausen noise as a non-destructive method and magnetic material characterization methodReviews the advantages and disadvantages of this non-destructive testing technique and compares it to other competitive techniques

  • by Virginia, Va, Virginia Tech, et al.
    £221.99

    The need to more efficiently harvest energy for electronics has spurred investigation into materials that can harvest energy from locally abundant sources. Ferroelectric Materials for Energy Harvesting and Storage is the first book to bring together fundamental mechanisms for harvesting various abundant energy sources using ferroelectric and piezoelectric materials. The authors discuss strategies of designing materials for efficiently harvesting energy sources like solar, wind, wave, temperature fluctuations, mechanical vibrations, biomechanical motion, and stray magnetic fields. In addition, concepts of the high density energy storage using ferroelectric materials is explored. Ferroelectric Materials for Energy Harvesting and Storage is appropriate for those working in materials science and engineering, physics, chemistry and electrical engineering disciplines.Reviews wide range of energy harvesting including solar, wind, biomechanical and moreDiscusses ferroelectric materials and their application to high energy density capacitorsIncludes review of fundamental mechanisms of energy harvesting and energy solutions, their design and current applications, and future trends and challenges

  • - From Materials, Devices, and Circuits to Applications Computational Memory, Deep Learning, and Spiking Neural Networks
     
    £233.99

  • Save 10%
    - Architectures, Protocols, Operation and Deployment
     
    £175.49

    Part one covers architectures for VCS, part two describes the physical layer, antenna technologies and propagation models, part three explores protocols, algorithms, routing and information dissemination and part four looks at the operation and deployment of vehicular communications and networks.

  •  
    £209.99

    Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing summarizes advances in the development of photo-electroactive memories and neuromorphic computing systems, suggests possible solutions to the challenges of device design, and evaluates the prospects for commercial applications. Sections covers developments in electro-photoactive memory, and photonic neuromorphic and in-memory computing, including discussions on design concepts, operation principles and basic storage mechanism of optoelectronic memory devices, potential materials from organic molecules,  semiconductor quantum dots to two-dimensional materials with desirable electrical and optical properties, device challenges, and possible strategies.  This comprehensive, accessible and up-to-date book will be of particular interest to graduate students and researchers in solid-state electronics. It is an invaluable systematic introduction to the memory characteristics, operation principles and storage mechanisms of the latest reported electro-photoactive memory devices. Reviews the most promising materials to enable emerging computing memory and data storage devices, including one- and two-dimensional materials, metal oxides, semiconductors, organic materials, and moreDiscusses fundamental mechanisms and design strategies for two- and three-terminal device structuresAddresses device challenges and strategies to enable translation of optical and optoelectronic technologies

  • - Investigation of Ferroelectric, Dielectric, and Semiconductor Materials and Devices
    by Yasuo (Tohoku University Cho
    £186.49

    Scanning Nonlinear Dielectric Microscopy: Investigation of Ferroelectric, Dielectric, and Semiconductor Materials and Devices is the definitive reference on an important tool to characterize ferroelectric, dielectric and semiconductor materials. Written by the inventor, the book reviews the methods for applying the technique to key materials applications, including the measurement of ferroelectric materials at the atomic scale and the visualization and measurement of semiconductor materials and devices at a high level of sensitivity. Finally, the book reviews new insights this technique has given to material and device physics in ferroelectric and semiconductor materials. The book is appropriate for those involved in the development of ferroelectric, dielectric and semiconductor materials devices in academia and industry. Presents an in-depth look at the SNDM materials characterization technique by its inventorReviews key materials applications, such as measurement of ferroelectric materials at the nanoscale and measurement of semiconductor materials and devicesAnalyzes key insights on semiconductor materials and device physics derived from the SNDM technique

  •  
    £198.49

    Spectroscopy of Lanthanide Doped Oxide Materials provides a comprehensive overview on the most essential characterization techniques of these materials, along with their key applications. The book describes the application of optical spectroscopy of lanthanides doped inorganic phosphor hosts and gives information about their structure and morphology, binding energies, energy of transition and band gap. Also discussed are the properties and applications of rare earth doped inorganic materials and the barriers and potential solutions to enable the commercial realization of phosphors in important applications. The book reviews key information for those entering the field of phosphor research, along with the fundamental knowledge of the properties of transition series elements under UV/Visible/NIR light exposer. Low-cost materials methods to synthesize the materials and spectroscopic characterization methods are also detailed.Reviews the barriers and potential solutions to enable commercial realization of inorganic phosphorsDiscusses low-cost material methods to synthesize and characterize lanthanide doped oxide materialsProvides readers with a comprehensive overview on key properties for the most relevant applications, such as lighting and display, energy conversion and solar cell devices

  • - Materials, Properties and Devices
     
    £198.49

    Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized.Explores all aspects of the structural and electrical properties of HfO2, including processes, modelling and implementation into semiconductor devicesConsiders potential applications including FeCaps, FeFETs, NCFETs, FTJs and moreProvides comparison of an emerging ferroelectric material to conventional ferroelectric materials with insights to the problems of downscaling that conventional ferroelectrics face

  • - Fibre Types, Materials, Fabrication, Characterisation and Applications
     
    £195.99

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.