Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This book is devoted to the study of an effective frequency-domain approach, based on systems control theory, to compute and analyze several types of standard bifurcation conditions for general continuous-time nonlinear dynamical systems. A very rich pictorial gallery of local bifurcation diagrams for such nonlinear systems under simultaneous variations of several system parameters is presented. Some higher-order harmonic balance approximation formulas are derived for analyzing the oscillatory dynamics in small neighborhoods of certain types of Hopf and degenerate Hopf bifurcations.The frequency-domain approach is then extended to the large class of delay-differential equations, where the time delays can be either discrete or distributed. For the case of discrete delays, two alternatives are presented, depending on the structure of the underlying dynamical system, where the more general setting is then extended to the case of distributed time-delayed systems. Some representative examples in engineering and biology are discussed.
Focuses on the research topics investigated during the three-year research project funded by the Italian Ministero dell'Istruzione, dell'Universita e della Ricerca under the FIRB project RBNE01CW3M. This book presents the final results of the project after a general introduction to the subject.
With Chua's circuit, chaos became a physical phenomenon, understood and represented in mathematical language. But, it is difficult for the non-specialist to appreciate the variety of behaviors that the system can produce. This book aims to bridge the gap and contains illustrated 3D color images, time series and fast Fourier transform algorithms.
This book focuses on a class of uncertain systems that are called imperfect, and shows how much systems can regularly work if an appropriate control strategy is adopted.
Focuses on both continuous and discontinuous one-dimensional piecewise-linear maps and summarizes the results related to bifurcation structures in regular and robust chaotic domains.
This book is aimed primarily towards physicists and mechanical engineers specializing in modeling, analysis, and control of discontinuous systems with friction and impacts. It fills a gap in the existing literature by offering an original contribution to the field of discontinuous mechanical systems based on mathematical and numerical modeling as well as the control of such systems. Each chapter provides the reader with both the theoretical background and results of verified and useful computations, including solutions of the problems of modeling and application of friction laws in numerical computations, results from finding and analyzing impact solutions, the analysis and control of dynamical systems with discontinuities, etc. The contents offer a smooth correspondence between science and engineering and will allow the reader to discover new ideas. Also emphasized is the unity of diverse branches of physics and mathematics towards understanding complex piecewise-smooth dynamical systems. Mathematical models presented will be important in numerical experiments, experimental measurements, and optimization problems found in applied mechanics.Sample Chapter(s)
This book focuses on the computational analysis of nonlinear vibrations of structural members (beams, plates, panels, shells), where the studied dynamical problems can be reduced to the consideration of one spatial variable and time.
This unique volume presents an original approach to physical acoustics with additional emphasis on the most useful surface acoustic waves on solids.
Contains numerous results in 1-dimensional cellular automata. This title states that only 82 local rules, out of 256, suffice to predict the time evolution of any of the remaining 174 local rules from an arbitrary initial bit-string configuration.
In 1971, Leon O Chua presented the formulation of a memristor, which was postulated as the fourth circuit element in electrical circuit theory - one that could join the existing core group of elements: capacitor, resistor and inductor. This book describes advanced research on significant issues in the field of memristors.
For researchers in nonlinear science, this work includes coverage of linear systems, stability of solutions, periodic and almost periodic impulsive systems, integral sets of impulsive systems, optimal control in impulsive systems, and more.
Presents a theory on the transition to dynamical chaos for two-dimensional nonautonomous, and three-dimensional, many-dimensional and infinitely-dimensional autonomous nonlinear dissipative systems of differential equations including nonlinear partial differential equations and differential equations with delay arguments.
This book is devoted to the history of chaos theory, from celestial mechanics (three-body problem) to electronics and meteorology. Many illustrative examples of chaotic behaviors exist in various contexts found in nature (chemistry, astrophysics, biomedicine). This book includes the most popular systems from chaos theory (Lorenz, Rössler, van der Pol, Duffing, logistic map, Lozi map, Hénon map etc.) and introduces many other systems, some of them very rarely discussed in textbooks as well as in scientific papers. The contents are formulated with an original approach as compared to other books on chaos theory.
A short monograph that, owing to geometric interpretation complete with computer colour graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics.
Technical problems often lead to differential equations with piecewise-smooth right-hand sides. This book presents some of the fascinating new phenomena that one can observe in piecewise-smooth dynamical systems.
Discusses the applications of chaos control methods in circuits and systems. This book emphasises on bridging the gap between chaos control methods and circuits and systems.
Robust chaos is defined by the absence of periodic windows and coexisting attractors in some neighborhoods in the parameter space of a dynamical system. This book explores the definition, sources, and roles of robust chaos. It is suitable for both readers and researchers in nonlinear science in general, and chaos theory in particular.
Offers the details of the mathematical mechanics for the modeling of skeletal muscle contraction. This work examines a succession of distinguishable universes of particles, and continuous, thermodynamic, chemical, and molecular bodies, with a focus on proofs by algebraic calculation without set theory.
Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on the random factors. This work focuses on the approach to stochastic equations from the perspective of ordinary differential equations.
Reveals a novel quasi-ergodicity phenomenon involving orbits meandering among omega-limit orbits of complex (group 5) and hyper (group 6) Bernoulli rules. This title uses rigorous analyses to identify 67, out off 256 , local rules whose asymptotic behaviors consist of robust period-l orbits.
This invaluable volume ends the quest to uncover the secret recipes for predicting the long-term evolution of a ring of identical elementary cells where the binary state of each cell during each generation of an attractor (i.e. after the transients had disappeared) is determined uniquely by the state of its left and right neighbors in the previous generation, as decreed by one of 256 truth tables. As befitting the contents aimed at school children, it was found pedagogically appealing to code each truth table by coloring each of the 8 vertices of a cubical graph in red (for binary state 1), or blue (for binary state 0), forming a toy universe of 256 Boolean cubes, each bearing a different vertex color combination. The corresponding collection of 256 distinct Boolean cubes are then segegrated logically into 6 distinct groups where members from each group share certain common dynamics which allow the long-term evolution of the color configuration of each bit string, of arbitrary length, to be predicted painlessly, via a toy-like gaming procedure, without involving any calculation. In particular, the evolution of any bit string bearing any initial color configuration which resides in any one of the possibly many distinct attractors, can be systematically predicted, by school children who are yet to learn arithmetic, via a simple recipe, for any Boolean cube belonging to group 1, 2, 3, or 4. The simple recipe for predicting the time-asymptotic behaviors of Boolean cubes belonging to groups 1, 2, and 3 has been covered in Vols. I, II, ..., V. > 0, or 0 (resp. As in the five prior volumes, Vol. VI also contains simple recipes which are, in fact, general and original results from the abstract theory of 1-dimensional cellular automata. Indeed, both children and experts from cellular automata will find this volume to be as deep, refreshing, and entertaining, as the previous volumes.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.