Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
Thermal barrier coatings (TBCs) are ceramic coating systems developed to reduce the heat transfer from a hot medium to the coated parts. This technology can be used in automotive exhaust systems to reduce the heat transfer from the exhaust gases to the metal pipes. As a result, catalytic converters can reach the ideal temperature for the conversion of gases more quickly, reducing emissions. In order to be effective, coatings must be applied to the inside of pipes. However, conventional techniques for the preparation of ceramic coatings are not suitable for the deposition of coatings inside of long pipes with small diameter, or are too expensive. In this work, a TBC system was developed using the polymer-derived ceramics (PDC) technique. In this method, ceramic coatings are obtained by the thermal conversion of preceramic polymers into ceramics, after deposition of the coatings by simple lacquer techniques. Fillers are used to tailor the microstructure and the properties of the coatings. This book contains a review of the literature on PDC coatings, the procedures for the preparation of the TBCs, as well as their properties.
In the present work, both in silico and in vivo methods for flux analysis in plants were successfully developed and applied for enhanced understanding of plant physiology. Taken together, the in silico metabolic simulations provide detailed molecular insights into plant functioning, particularly by linking in vivo with in silico data. The knowledge gained from such a systems-biological approach, together with the proposed high potential of plants as biotechnological production platforms, especially for compounds requiring much redox power, will help to establish plants as biotechnological factories.For the first time, the in vivo metabolism of an agriculturally relevant crop, O. sativa, was investigated, through non-stationary 13C-metabolic flux analysis. This allowed elucidation of the in vivo intracellular carbon partitioning in rice plants and of the plants' necessity for futile cycling of resources, thus, contributing significantly to our current knowledge on plant metabolism. In addition, the effect of imazapyr, an industrially relevant herbicide, on rice metabolism was inspected using the newly established workflow. This first real-life case-study provides a valuable proof-of-principle and enabled a deeper understanding of the immediate metabolic effects of the treatment. This method can now be adopted to other crops, cell lines and stress inducers, such as abiotic stresses, herbicides and fungicides, and therefore, has great potential in green biotechnology.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.