We a good story
Quick delivery in the UK

Books published by IWA Publishing

Filter
Filter
Sort bySort Popular
  • by Steve E. Hrudey & Elizabeth J. Hrudey
    £163.99

    Drinking water provides an efficient source for the spread of gastrointestinal microbial pathogens capable of causing serious human disease. The massive death toll and burden of disease worldwide caused by unsafe drinking water is a compelling reason to value the privilege of having safe drinking water delivered to individual homes. On rare occasions, that privilege has been undermined in affluent nations by waterborne disease outbreaks traced to the water supply. Using the rich and detailed perspectives offered by the evidence and reports from the Canadian public inquiries into the Walkerton (2000) and North Battleford (2001) outbreaks to develop templates for understanding their key dimensions, over 60 waterborne outbreaks from 15 affluent countries over the past 30 years are explored as individual case studies. Recurring themes and patterns are revealed and the critical human dimensions are highlighted suggesting insights for more effective and more individualized preventive strategies, personnel training, management, and regulatory control. Safe Drinking Water aims to raise understanding and awareness of those factors that have most commonly contributed to or caused drinking-water-transmitted disease outbreaks - essentially a case-history analysis within the multi-barrier framework. It contains detailed analysis of the failures underlying drinking-water-transmitted disease epidemics that have been documented in the open literature, by public inquiry, in investigation reports, in surveillance databases and other reliable information sources. The book adopts a theme of 'converting hindsight into foresight', to inform drinking-water and health professionals including operators, managers, engineers, chemists and microbiologists, regulators, as well as undergraduates and graduates at specialty level. Key Features: Contains details and perspectives of major outbreaks not widely known or understood beyond those directly involved in the investigations. Technical and scientific background associated with case studies is offered in an accessible summary form. Does not require specialist training or experience to comprehend the details of the numerous outbreaks reviewed. By providing a broad-spectrum review using a consistent approach, several key recurring themes are revealed that offer insights for developing localized, tailor-made prevention strategies.

  • by Fadia Daibes-Murad
    £124.49

    What are the rules of international water law that govern the use of the transboundary aquifers shared by Palestine and Israel? This book addresses this issue through an interdisciplinary approach, identifying first the special problems tied to the management of shared groundwater, and next critically analysing the applicable rules of international law. The innovative contribution of this work is its attempt to devise and suggest the means to implement a "e;progressive framework"e; for cooperation in the development and management of these shared waters. A solid review of hydro-politics, supported by current up to date information and rigorous examination of the evolution of the relevant rules of international law makes this book an important contribution to this very problematic area. Dr Fadia Diabes-Murad was awarded the Edberg Award 2005, presented at a special awards ceremony in Stockholm. The award recognised her contribution to peace in the Middle East through her work on water law, including using water as a catalyst for peace in the Middle East.

  • by Alistair Rieu-Clarke
    £119.49

    Implementing the goal of sustainable development has long been heralded as the means by which the needs of both present and future generations can be met. However, finding a long-term balance between economic, social and environmental interests, the basic tenet of sustainable development, has proved largely illusive in practice. This book shows that while a number of legal frameworks to help promote the goal of sustainable development have been proposed at the international level they fail to fully capture the essence of sustainable development and international law's capacity to support its implementation. The book offers a critical analysis of past attempts to develop legal frameworks for promoting sustainable development at the international level, and advocates for a fresh approach based on lessons learnt from the law of international watercourses. The book is divided into four sections. The first section includes an overview of the topic area and an understanding of international law. In section two the book explores the meaning of sustainable development and considers the term's relationship with international law. A detailed analysis of how the law of international watercourses seeks to reconcile competing economic, social and environmental interests is carried out in section three. The book concludes with a section advocating the need for a fresh approach to international law and sustainable development and offering the foundations for this approach based on lessons learnt from the law of international watercourses.

  • by T. Ballance & A. Taylor
    £119.49

    Competition and Economic Regulation in Water: The Future of the European Water Industry reviews the main developments in economic regulation and competition in the European water industry and considers ways in which economic regulation and competition should be further developed. The book focusses on the best means of regulating or introducing competition into the industry in light of its present structure. Competition and Regulation in Water: The Future of the European Water Industry concentrates on the water industry, however, many of the conclusions are equally applicable also to the wastewater industry. Contents Introduction Water industry fundamentals: the rationale for regulation and the scope for competition A framework for evaluating different models of water industry regulation England & Wales: private ownership and independent regulation France: competition for the market and contract-based regulation Germany: public-private partnerships and multi-sector utilities Developing water sector regulatory frameworks in less developed countries Appendix: The legislative framework for the water industry in England & Wales

  •  
    £124.49

    This comprehensive reference, dealing with municipal wastewater management in developing countries, is prepared by leading international authorities, and will provide an invaluable reference for all those concerned with the management of sanitation services in developing countries worldwide.

  • by F. Arregui, R. Cobacho & Enrique Cabrera Jr
    £136.99

    Water meters are the cornerstone of commercial systems for water utilities throughout the world; revenue is directly derived from the, figures provided by meters. Despite this, little attention has been paid, in terms of selection, replacement period and return on investment, to the management and optimization of water meters. Integrated Water Meter Management is a comprehensive reference for engineers and managers alike, providing: in-depth technical information allowing the true nature and behaviour of meters to be understood; a comprehensive review and comparison of relevant global water meter technologies - a useful tool to help decide which water meter is best for your utility; discussion of key decisions concerning the use of water meters (when to replace them, which one to use, how to control their quality) from a managerial perspective. Integrated Water Meter Management is an invaluable resource for those involved in urban water management, including water utility managers, engineering technical staff, operations and maintenance specialists, meter-reading personnel and scientific researchers in this discipline.

  • - Bioluminescent Microorganisms
    by P. D. Frymier
    £129.99

    Biological wastewater treatment plants can be adversely affected by influent toxicity. The effects can range from poor clarifier biomass settling and elevated effluent BOD and ammonia levels to total plant kills. These problems could be minimized or eliminated if an effective method existed for continuously monitoring biological wastewater treatment plant influent for toxicity to the treatment plant microorganisms. Current influent screening methods have not been proven to be adequate for adaptation to continuous screening in the field. The primary reasons include the batch-wise nature of the assays and an inadequate correlation between the assays and plant performance. The goal of the research team was to create new bioluminescent biosensors from different types of bacteria found in biological wastewater treatment plants for the development of a multi-channel continuous monitoring system. A system built from multiple biosensors would make it possible to differentiate between potential influent toxicity effects to different classes of bacteria (such as nitrifying and heterotrophic bacteria). The research team found it unexpectedly challenging to apply common microbiological transformation methods for laboratory strains to the wastewater treatment plant strains. The research team generated six new bioluminescent bioreporters from bacteria that are typical constituents of activated sludge. Of particular significance is a bioreporter developed using a Hyphomicrobium sp., which is a slow growing bacterium known to be present in significant numbers in some activated sludge plants. Of the six generated, initial bioluminescence and toxicity screening indicated that one strain (a Pseudomonad) was a particularly promising candidate due to its ease of cultivation and high light production. Further toxicity testing, however, determined that the response of the strain to 48 organic compounds and 8 metals commonly found in wastewater was similar to that of a previously created strain, Shk1 (also a Pseudomonad). Further work is therefore needed in the generation of appropriate biosensors and test conditions for populations not represented by the new heterotrophic biosensor.

  • by J. A. Soller & A. W. Olivieri
    £129.99

    This investigation reviewed and evaluated methodologies used for microbial risk assessment with respect to their applicability for reclaimed water applications. The investigation was comprised of five primary components: a comprehensive database of articles, reports and books describing microbial risk assessment methodologies was established and reviewed. Risk assessment techniques and models were identified for estimating the public health risk from exposure to microorganisms via reclaimed water applications. Two models were identified for further evaluation: a static (individual based) and a dynamic (population based). In the third component, the two models were evaluated to differentiate between the conditions under which models predict similar and substantially different estimations of risk. Through numerical simulation, exposure/pathogen combinations were identified when it may be appropriate to use the less complex, static model. Case study risk assessment scenarios demonstrated the model selection process for three realistic, yet hypothetical reclaimed water scenarios.The fourth component presents a constraint analysis for existing reuse regulations. The constraint analysis is carried out by documenting the existing reuse regulations. The constraint analysis is carried out by documenting the existing regs in three states for landscape irrigation and uses that comparison as a starting point to identify how microbial risk assessment may be useful within the context of existing and potential future water reuse regulations. The investigation concludes by identifying criteria for a computer interface that would allow regulatory and/or municipal agencies/utilities to take advantage of the analysis discussed in the report. This publication can also be purchased and downloaded via Pay Per View on Water Intelligence Online - click on the Pay Per View icon below

  • by Derin Orhon, Ozlem Karahan, G. E. Zengin, et al.
    £93.49

    The sequencing batch reactor (SBR) is perhaps the most promising and viable of the proposed activated sludge modifications today for the removal of organic carbon and nutrients. In a relatively short period, it has become increasingly popular for the treatment of domestic and industrial wastewaters, as an effective biological treatment system due to its simplicity and flexibility of operation. Mechanism and Design of Sequencing Batch Reactors for Nutrient Removal has been prepared with the main objective to provide a unified design approach for SBR systems, primarily based on relevant process stoichiometry. Specific emphasis has been placed upon the fact that such a unified design approach is also by nature the determining factor for the selection of the most appropriate cyclic operation scheme, the sequence of necessary phases and filling patterns for the particular application. The proposed basis for design is developed and presented in a stepwise approach to cover both organic carbon and nutrient removal, domestic and industrial wastewaters, strong and specific wastes. The merits of model simulation as an integral complement of process design, along with performance evaluation of SBR models are also emphasized. Scientific and Technical Report No. 19

  •  
    £112.99

    Bridging the Citizens-Science-Policy Gap examines the anthropogenic deterioration of water ecosystems, in particular in coastal areas.

  • - A Bench Scale Evaluation
    by Robert A. Zimmerman, Andrew T. Bradshaw & Don Richard
    £129.99

    Nitrification kinetics were evaluated in bench-scale batch reactors fed with a synthetic wastewater containing approximately 1,000 mg ammonia-nitrogen (NH3-N)/L operated at 5, 10, and 20 day solids retention times (SRTs) and with dewatered biosolids supernatant (1,126 to 1,680 mg NH3-N/L) operated at a 20-day SRT. For the 5- and 10-day SRTs, complete nitrification appeared to be inhibited by the presence of un-ionized ammonia and un-ionized nitrous acid. For the 20-day SRT, near complete nitrification was observed for both substrates. Observed ammonium oxidation rates decreased with increasing SRT. Observed yield coefficients were similar for all SRTs and substrates. Fully established steady-state conditions were observed at higher SRTs despite process start-up and operational considerations. Although it may be possible to culture a nitrifier population capable of near-complete nitrification at lower SRTs, the design configuration and operational strategy must mitigate the potential for un-ionized ammonia and un-ionized nitrous acid inhibition (e.g. process start-up at lower concentration with gradual increase to higher concentration, continuous feed operation, etc). Batch bioaugmentation analyses were conducted in the mixed liquor suspended solids and final clarifier effluent from a non-nitrifying activated sludge with seed nitrifiers developed from the 20-day SRT reactors and with biomass from a nitrifying trickling filter facility. Ammonia removal was observed in all bioaugmentation analyses with no apparent lag or acclimation period. Observed ammonium oxidation rates were not significantly different between the seed and batch bioaugmentation reactors. Acclimation does not appear to be a critical obstacle for nitrifier bioaugmentation when environmental conditions (e.g. temperature, pH, etc.) between the seed and bioaugmentation processes are not significantly different.

  • by Jay Witherspoon & Gregory M. Adams
    £129.99

    This project was undertaken in response to needs by the wastewater treatment industry to better understand the generation of odors from biosolids produced by wastewater treatment plants (WWTPs). Its primary objective is to begin to establish relationships between WWTP process parameters and biosolids odors, so that more effective techniques for minimizing biosolids odors can be developed. The project consisted of a detailed field study involving extensive sampling and analyses at 11 WWTPs across North America with capacities from 13 to 350 million gallons per day (mgd). Biosolids samples were collected from the WWTPs at a number of sampling points, which were chosen to represent a complete snapshot of biosolids generation and handling at each WWTP. The sampling points started with influent wastewater, proceeded through primary and secondary clarification, and continued through digestion, dewatering, and onsite storage of dewatered biosolids cake. Laboratory-scale anaerobic storage tests were conducted to simulate odor development of biosolids in storage, prior to their beneficial reuse or disposal. A battery of analyses were performed on the biosolids samples by the participating utility laboratories, commercial laboratories, and specialized university laboratories. The analytical data were evaluated and compared with process and operation parameters at each participating WWTP.

  • - Case Studies and Protocol
    by S. Merrill
    £129.99

    The purpose of this research project was to examine construction projects that successfully reduced Rainfall Dependent Infiltration/Inflow (RDII). The research began with a literature review of all published records describing RDII removal projects. Initially, the review identified many projects; however, subsequent evaluation of available information revealed several important realities. First, most RDII removal projects in the country go undocumented. Second, of the RDII removal project summaries that have been published, few provide good data. Third, data gathering and analyses for this report were hampered by lack of documentation, lost or unavailable monitoring data, and weaknesses in monitoring techniques. Projects with sufficient information describing the conditions before the RDII removal project received a detailed analysis. In all, the case studies from the six agencies presented in this report (1) document before-and-after RDII levels, (2) quantify the RDII reduction achieved, and (3) describe the cost-effectiveness of the removal. As more than one project was documented for some agencies, a total of 12 RDII projects received review. The projects examined include both those that ?successfully? reduced RDII and those that did not. In general, the conclusion was that utilities run the risk of not removing significant RDII unless they address private sewer laterals. The only cases examined where significant RDII was removed were those that addressed private sewers or inflow sources. A major recommendation of this report was to establish a standard reporting protocol for documenting RDII removal projects. This protocol details what specific information should be provided when documenting an RDII removal project and how to perform an evaluation of RDII removal effectiveness. The protocol touches on issues ranging from flow meter maintenance to statistical analysis of flow data. By using the proper documentation recommended in this report, communities allow others who are preparing to perform similar work to examine and utilize the results of any RDII removal project. This publication can also be purchased and downloaded via Pay Per View on Water Intelligence Online - click on the Pay Per View icon below

  • - Literature Search and Review
    by Jay Witherspoon & Gregory M. Adams
    £129.99

    A general review of literature published from 1990 to 2000 and unpublished (gray) literature on odors associated with municipal wastewater collection systems and treatment facilities, including biosolids handling. The literature review focused on several areas including odor characterization technology, odor sampling, analysis, measurement technology, and odor mitigation (control) technology.

  • by T. M. Palmer
    £129.99

    The design of wastewater treatment plants with redundancy to assure a quality end product may be in conflict with efforts to assure effectiveness. Redundancy of major system components is to assure compliance with regulations and protection of the environment and the health and safety of the public and treatment plant staff. However, the capital costs and maintenance associated with redundant equipment does not necessarily enhance facility performance. There are a number of forces driving the level of redundancy in plant designs. Federal and state compliance regulations and the design engineer?s past experiences will influence the plant design. To some extent the plant staff may also provide input into the plant design and, therefore, contributes to the redundancy. This report determines alternative methods to address treatment plant redundancy, including examples of methods currently in place and, ideally, insight on the premises leading to these applications. A secondary objective is to identify the similarities and differences in redundancy requirements associated with federal and state regulatory agencies. This publication can also be purchased and downloaded via Pay Per View on Water Intelligence Online - click on the Pay Per View icon below

  • - A Probabalistic Site-Specific Approach
    by D. R. J. Moore, A. Pawlisz & R. S. Teed
    £129.99

    This project examined the development of ambient water quality criteria (AWQC) for the protection of wildlife for mercury. Mercury is considered a serious risk to wildlife in many areas. As a result, the Great Lakes Water Quality Initiative and others have developed AWQC. These AWQC have been controversial, however, because (1) the AWQC were single values that did not account for site-specific conditions; (2) derivation of the AWQC relied on a single NOAEL, and (3) the AWQC had an unknown level of conservatism because of reliance on both average and conservative assumptions and uncertainty factors. Rather than develop a single value AWQC for total mercury, we derive an AWQC model that explicitly incorporates factors controlling bioavailability, methylation rates and bioaccumulation in the aquatic environment (e.g., pH, DOC, sulfate). To derive our AWQC model, field data was collected including numerous water quality parameters and total mercury and methylmercury concentrations in whole body fish tissue from 31 lakes in Ontario and an additional 10 lakes in Nova Scotia. An independent dataset consisting of 51 water bodies in the United States was then used to confirm the validity and robustness of the AWQC model. Next we combined the results of chronic-feeding studies with similar protocols and endpoints, in a meta-analysis to derive a dose-response curve for mink exposed to mercury in the diet. Using this approach, one can derive an LD5 or other similar endpoint that can then be used as the basis for deriving -wildlife AWQC. In the final step, we used a probabilistic risk model to estimate the concentrations of methylmercury in water that would lead to levels in fish sufficient for there to be a 10% probability of exceeding the mink LD5. This analysis was repeated for various combinations of pH and DOC. The result is an AWQC model for mercury for the protection of wildlife that can be used for a variety of site-specific conditions. This publication can also be purchased and downloaded via Pay Per View on Water Intelligence Online - click on the Pay Per View icon below

  • by William F. McCoy
    £116.49

    Preventing Legionellosis covers the biology of Legionella and presents a comprehensive review of best practices for legionellosis prevention from around the world. Recent outbreaks, climbing incidence rates and pending lawsuits have raised public awareness about legionellosis, a serious, preventable form of pneumonia that can be contracted from water systems in buildings. Legionellosis has harmed millions of people worldwide and causes annual monetary losses in the billions. However, to really understand the effects of the disease, one must listen carefully as the victims, or their survivors, describe the suffering they have endured. Preventing Legionellosis provides concise detail for: Improving awareness and education Implementing water management plans Mitigating against commercial conflict of interest The book will give the scientific basis for the worldwide technical consensus on the prevention of legionellosis. It will be an invaluable source of information for public health administrators, epidemiologists, infection control professionals, facility safety managers, industrial hygienists, and academic engineers and scientists.

  •  
    £157.49

    "Process Science and Engineering for Water and Wastewater Treatment" is the first in a series of distance learning course books from IWA Publishing. The ne series intends to help readers become familiar with design, operation and management of water and wastewater treatment processes without having to refer to any other texts

  • by P. F. Strom
    £129.99

    Simultaneous biological nutrient removal (SBNR) is the removal of nitrogen and/or phosphorus in excess of that required for biomass synthesis in biological wastewater treatment systems where there are no defined anaerobic and/or anoxic zones. The hypothesis is that one or more of three mechanisms is responsible within individual systems: variations in the bioreactor macroenvironment created by the mixing pattern, gradients within the floc microenvironment, and/or novel microorganism activity. Understanding of the mechanisms of SBNR can be expected to lead to improved efficiency and reliability in its application. Preliminary work documented SBNR in 7 full-scale OrbalTM closed loop bioreactors. A batch assay demonstrated that novel microorganism activity was of little importance in SBNR at the three plants tested. While the floc microenvironment likely plays an important role in nitrogen removal in such plants, it cannot explain phosphorus removal. A computational fluid dynamics (CFD) model was developed to elucidate the role of the bioreactor macroenvironment in SBNR. This is the first reported application of CFD to activated sludge biological wastewater treatment. Although the software and computational requirements limited model complexity, it still simulated the creation of dissolved oxygen gradients within the system, demonstrating that the anaerobic zones required for SBNR could occur.

  • by Karl G. Linden
    £129.99

    Disinfection of wastewater is a necessary treatment process for protecting the public from potential exposure to pathogenic microorganisms because many wastewater effluents are discharged into water bodies that may be used for recreation or as future drinking water supplies. Two common forms of disinfection are chlorine and ultraviolet (UV) light. However, microorganisms differ in their susceptibility to UV and chlorine disinfectants. It is necessary to understand how different classes of pathogens respond to UV and chlorine disinfection processes in wastewater to better develop strategies for optimizing the treatment of pathogens in wastewater. It is also recognized that water quality may impact disinfection effectiveness, such as protection of pathogen by particles and disinfectant demand. This study investigated bacteria, viruses and protozoan pathogens. All species of bacteria tested were susceptible to both UV and chlorine, despite differences in antibiotic resistance and tendency to aggregate. Upon exposure to disinfection conditions that could indicate viability of the bacteria tested, but not culturability using common methods, it was found that UV and chlorine were effective in eliminating the capability of viable but non-culturable bacteria to resuscitate and become re-infective. Clostridium spores were resistant to free chlorine and UV disinfection but found to be susceptible to long exposure to monochloramine. Cryptosporidium was resistant to all chlorine forms but very susceptible to UV irradiation. Pathogenic and indicator viruses tested were very susceptible to free chlorine and UV disinfection. UV radiation throughout the 200 to 300 nm range was effective for inactivation of viruses and C. parvum, but wavelengths between 260-270 nm and below 220 nm appeared to be more effective for viruses, suggesting a possible advantage for polychromatic UV sources. Sequential disinfection strategies were proposed and tested to enhance inactivation of various microorganisms. One scenario integrated UV disinfection followed by dynamic chloramination through addition of free chlorine and subsequent transformation to combined chlorine. Further, disinfection of microorganisms in wastewater presents challenges that are inherent to the water matrix, such as pathogens associated with particles. UV and chlorine were both effective for disinfection of coliform in wastewater but chlorine was found to be more effective during long contact times for inactivation of particle associated coliform. In addition to coliform, both Cryptosporidium parvum and Salmonella typhimurium were identified as being particle associated in wastewater using molecular approaches developed to detect microbes in environmental samples

  • by K. G. Robinson
    £129.99

    This research attempts to evaluate nitrification treatment performance in combined carbon/nitrogen municipal wastewater reactors using traditional physical/chemical methods and modern molecular techniques. Bench scale activated sludge reactors were operated at different SRTs under varying DO levels and temperatures over a 21-month period. Real-time PCR assays were used to determine cell concentrations of total bacterial 16S rDNA, a gross measure of biomass content, the amoA gene, a measure of ammonia-oxidizing bacteria (AOB), and the Nitrospira 16S rDNA gene, a measure of nitrite-oxidizing bacteria (NOB). As expected, gravimetric biomass and total bacterial 16S rDNA levels increased with increasing SRT. Ammonia oxidation rates and N. oligotropha-type AOB concentrations did not follow similar trends with respect to changes in SRT, temperature, and DO nor were they highly correlated. The concentration of available nitrite and SRT were positively correlated with Nitrospira cell densities, while DO concentration and temperature were negatively correlated with NOB levels. The percentage of the total population comprised of AOB and NOB obtained with the real-time PCR assays were compared to predicted values estimated from design equations using typical kinetic parameters. While the percentages of NOB measured using the real-time PCR assay corresponded very well with the predicted values, the measured percentages of AOB were much lower than those estimated from the design equations, suggesting that N. oligotropha-type AOB were not the dominant ammonia-oxidizing species in these reactors. This publication can be purchased and downloaded via Pay Per View on Water Intelligence Online - click on the Pay Per View icon below

  •  
    £175.49

    Several options to recover energy out of organic solid waste from domestic, agricultural, and industrial origin are presented and discussed. This text also demonstrates existing economically feasible treatment systems that produce energy out of solid waste.

  • - Fiber Optic Sensor
    by A. C. Cannons
    £129.99

    Two methods for the detection of important human pathogens, Cryptosporidium parvum and Helicobacter pylori, were investigated: a fiber optic biosensor, and real time PCR. The mechanism for specific detection in both methods is, recognition of specific DNA sequences in the target organisms. The Analyte 2000 was the biosensor that was used.

  • by Henryk Melcer
    £129.99

    Mathematical modeling is a useful tool for the design, analysis and control of wastewater treatment systems. The activated sludge process is one of the most common processes used in wastewater treatment, and therefore is a particularly important candidate for the application of mathematical models.

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.