We a good story
Quick delivery in the UK

Books published by Manning Publications

Filter
Filter
Sort bySort Popular
  • by Rishal Hurbans
    £39.49

    ”This book takes an impossibly broad area of computer science and communicates what working developers need to understand in a clear and thorough way.” - David Jacobs, Product Advance Local Key Features Master the core algorithms of deep learning and AI Build an intuitive understanding of AI problems and solutions Written in simple language, with lots of illustrations and hands-on examples Creative coding exercises, including building a maze puzzle game and exploring drone optimizationAbout The Book “Artificial intelligence” requires teaching a computer how to approach different types of problems in a systematic way. The core of AI is the algorithms that the system uses to do things like identifying objects in an image, interpreting the meaning of text, or looking for patterns in data to spot fraud and other anomalies.  Mastering the core algorithms for search, image recognition, and other common tasks is essential to building good AI applications Grokking Artificial Intelligence Algorithms uses illustrations, exercises, and jargon-free explanations to teach fundamental AI concepts.You’ll explore coding challenges like detect­ing bank fraud, creating artistic masterpieces, and setting a self-driving car in motion. All you need is the algebra you remember from high school math class and beginning programming skills.  What You Will Learn Use cases for different AI algorithms Intelligent search for decision making Biologically inspired algorithms Machine learning and neural networks Reinforcement learning to build a better robot This Book Is Written For For software developers with high school–level math skills. About the Author Rishal Hurbans is a technologist, startup and AI group founder, and international speaker. Table of Contents 1 Intuition of artificial intelligence 2 Search fundamentals 3 Intelligent search 4 Evolutionary algorithms 5 Advanced evolutionary approaches 6 Swarm intelligence: Ants 7 Swarm intelligence: Particles 8 Machine learning 9 Artificial neural networks 10 Reinforcement learning with Q-learning

  • by Laurentiu Spilca
    £42.49

  • - Static sites and dynamic JAMstack apps
    by Atishay Jain
    £35.99

  • - A friendly introduction using Python
    by Ekaterina Kochmar
    £28.99

  • - A hands-on approach
    by Sarah Kaiser
    £42.49

  • - Learn coding and testing with puzzles and games
    by Ken Youens-Clark
    £28.99

  • by Michael Geers
    £35.99

    By adopting the micro frontends approach and designing your web apps as systems of features, you can deliver faster feature development, easier upgrades, and pick and choose the technology you use in your stack. Micro Frontends in Action is your guide to simplifying unwieldy frontends by composing them from small, well-defined units. You'll learn to integrate web applications made up of smaller fragments using tools such as web components or server side includes, how to solve the organizational challenges of micro frontends, and how to create a design system that ensures an end user gets a consistent look and feel for your application. Key Features· Applying integration strategies with iframes, AJAX, server-side includes, web components and the app-shell approach· Optimizing for performance and asset delivery strategies· Designing coherent user interfaces· Migrating to a micro frontends architecture For intermediate web developers, team leaders, and software architects.

  • - With Suspense and Concurrent Mode
    by John Larsen
    £35.99

    React Hooks in Action teaches you to write fast and reusable React components using Hooks.Summary Build stylish, slick, and speedy-to-load user interfaces in React without writing custom classes. React Hooks are a new category of functions that help you to manage state, lifecycle, and side effects within functional components. React Hooks in Action teaches you to use pre-built hooks like useState, useReducer and useEffect to build your own hooks. Your code will be more reusable, require less boilerplate, and you’ll instantly be a more effective React developer. About the technology Get started with React Hooks and you’ll soon have code that’s better organized and easier to maintain. React Hooks are targeted JavaScript functions that let you reuse and share functionality across components. Use them to split components into smaller functions, manage state and side effects, and access React features without classes—all without having to rearrange your component hierarchy. About the book React Hooks in Action teaches you to write fast and reusable React components using Hooks. You’ll start by learning to create component code with Hooks. Next, you’ll implement a resource booking application that demonstrates managing local state, application state, and side effects like fetching data. Code samples and illustrations make learning Hooks easy. What's inside     Build function components that access React features     Manage local, shared, and application state     Explore built-in, custom, and third-party hooks     Load, update, and cache data with React Query     Improve page and data loading with code-splitting and React Suspense About the reader For beginning to intermediate React developers. About the author John Larsen has been a teacher and web developer for over 20 years, creating apps for education and helping students learn to code. He is the author of Get Programming with JavaScript. Table of Contents PART 1 1 React is evolving 2 Managing component state with useState hook 3 Managing component state with useReducer hook 4 Working with side effects 5 Managing component state with useRef hook 6 Managing application state 7 Managing performance with useMemo 8 Managing state with the Context API 9 Creating your own hooks 10 Using third party hooks PART 2 11 Code splitting with Suspense 12 Integrating data-fetching with Suspense 13 Experimenting with useTransition, useDeferredValue and SuspenseList

  • by Neil Madden
    £49.49

    API Security in Action teaches you how to create secure APIs for any situation. By following this hands-on guide you’ll build a social network API while mastering techniques for flexible multi-user security, cloud key management, and lightweight cryptography.Summary A web API is an efficient way to communicate with an application or service. However, this convenience opens your systems to new security risks. API Security in Action gives you the skills to build strong, safe APIs you can confidently expose to the world. Inside, you’ll learn to construct secure and scalable REST APIs, deliver machine-to-machine interaction in a microservices architecture, and provide protection in resource-constrained IoT (Internet of Things) environments. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology APIs control data sharing in every service, server, data store, and web client. Modern data-centric designs—including microservices and cloud-native applications—demand a comprehensive, multi-layered approach to security for both private and public-facing APIs. About the book API Security in Action teaches you how to create secure APIs for any situation. By following this hands-on guide you’ll build a social network API while mastering techniques for flexible multi-user security, cloud key management, and lightweight cryptography. When you’re done, you’ll be able to create APIs that stand up to complex threat models and hostile environments. What's inside     Authentication     Authorization     Audit logging     Rate limiting     Encryption About the reader For developers with experience building RESTful APIs. Examples are in Java. About the author Neil Madden has in-depth knowledge of applied cryptography, application security, and current API security technologies. He holds a Ph.D. in Computer Science. Table of Contents PART 1 - FOUNDATIONS 1 What is API security? 2 Secure API development 3 Securing the Natter API PART 2 - TOKEN-BASED AUTHENTICATION 4 Session cookie authentication 5 Modern token-based authentication 6 Self-contained tokens and JWTs PART 3 - AUTHORIZATION 7 OAuth2 and OpenID Connect 8 Identity-based access control 9 Capability-based security and macaroons PART 4 - MICROSERVICE APIs IN KUBERNETES 10 Microservice APIs in Kubernetes 11 Securing service-to-service APIs PART 5 - APIs FOR THE INTERNET OF THINGS 12 Securing IoT communications 13 Securing IoT APIs

  • - Asynchronous and Reactive Java
    by Julien Ponge
    £35.99

    Vert.x in Action teaches you how to build production-quality reactive applications in Java. This book covers core Vert.x concepts, as well as the fundamentals of asynchronous and reactive programming. Learn to develop microservices by using Vert.x tools for database communications, persistent messaging, and test app resiliency. The patterns and techniques included here transfer to reactive technologies and frameworks beyond Vert.x.Summary As enterprise applications become larger and more distributed, new architectural approaches like reactive designs, microservices, and event streams are required knowledge. The Vert.x framework provides a mature, rock-solid toolkit for building reactive applications using Java, Kotlin, or Scala. Vert.x in Action teaches you to build responsive, resilient, and scalable JVM applications with Vert.x using well-established reactive design patterns. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Vert.x is a collection of libraries for the Java virtual machine that simplify event-based and asynchronous programming. Vert.x applications handle tedious tasks like asynchronous communication, concurrent work, message and data persistence, plus they’re easy to scale, modify, and maintain. Backed by the Eclipse Foundation and used by Red Hat and others, this toolkit supports code in a variety of languages. About the book Vert.x in Action teaches you how to build production-quality reactive applications in Java. This book covers core Vert.x concepts, as well as the fundamentals of asynchronous and reactive programming. Learn to develop microservices by using Vert.x tools for database communications, persistent messaging, and test app resiliency. The patterns and techniques included here transfer to reactive technologies and frameworks beyond Vert.x. What's inside     Building reactive services     Responding to external service failures     Horizontal scaling     Vert.x toolkit architecture and Vert.x testing     Deploying with Docker and Kubernetes About the reader For intermediate Java web developers. About the author Julien Ponge is a principal software engineer at Red Hat, working on the Eclipse Vert.x project. Table of Contents PART 1 - FUNDAMENTALS OF ASYNCHRONOUS PROGRAMMING WITH VERT.X 1 Vert.x, asynchronous programming, and reactive systems 2 Verticles: The basic processing units of Vert.x 3 Event bus: The backbone of a Vert.x application 4 Asynchronous data and event streams 5 Beyond callbacks 6 Beyond the event bus PART 2 - DEVELOPING REACTIVE SERVICES WITHT VERT.X 7 Designing a reactive application 8 The web stack 9 Messaging and event streaming with Vert.x 10 Persistent state management with databases 11 End-to-end real-time reactive event processing 12 Toward responsiveness with load and chaos testing 13 Final notes: Container-native Vert.x

  • by Dan Bechberger
    £35.99

    Graph Databases in Action teaches readers everything they need to know to begin building and running applications powered by graph databases. Right off the bat, seasoned graph database experts introduce readers to just enough graph theory, the graph database ecosystem, and a variety of datastores. They also explore modelling basics in action with real-world examples, then go hands-on with querying, coding traversals, parsing results, and other essential tasks as readers build their own graph-backed social network app complete with a recommendation engine! Key Features· Graph database fundamentals· An overview of the graph database ecosystem· Relational vs. graph database modelling· Querying graphs using Gremlin· Real-world common graph use cases For readers with basic Java and application development skills building in RDBMS systems such as Oracle, SQL Server, MySQL, and Postgres. No experience with graph databases is required. About the technology Graph databases store interconnected data in a more natural form, making them superior tools for representing data with rich relationships. Unlike in relational database management systems (RDBMS), where a more rigid view of data connections results in the loss of valuable insights, in graph databases, data connections are first priority. Dave Bechberger has extensive experience using graph databases as a product architect and a consultant. He's spent his career leveraging cutting-edge technologies to build software in complex data domains such as bioinformatics, oil and gas, and supply chain management. He's an active member of the graph community and has presented on a wide variety of graph-related topics at national and international conferences. Josh Perryman is technologist with over two decades of diverse experience building and maintaining complex systems, including high performance computing (HPC) environments. Since 2014 he has focused on graph databases, especially in distributed or big data environments, and he regularly blogs and speaks at conferences about graph databases.

  • by Bina Ramamurthy
    £32.49

  • by Emily Robinson
    £27.49

  • - 50 Essential Exercises
    by Reuven Lerner
    £42.49

  • by Paul Orland
    £42.49

    To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting?and lucrative!?careers in some of today's hottest programming fields. Key Features· 2D and 3D vector math· Matrices and linear transformations· Core concepts from linear algebra· Calculus with one or more variables· Algorithms for regression, classification, and clustering· Interesting real-world examples Written for programmers with solid algebra skills (even if they need some dusting off). No formal coursework in linear algebra or calculus is required. About the technology Most businesses realize they need to apply data science and effective machine learning to gain and maintain a competitive edge. To build these applications, they need developers comfortable writing code and using tools steeped in statistics, linear algebra, and calculus. Math also plays an integral role in other modern applications like game development, computer graphics and animation, image and signal processing, pricing engines, and stock market analysis. Paul Orland is CEO of Tachyus, a Silicon Valley startup building predictive analytics software to optimize energy production in the oil and gas industry. As founding CTO, he led the engineering team to productize hybrid machine learning and physics models, distributed optimization algorithms, and custom web-based data visualizations. He has a B.S. in mathematics from Yale University and a M.S. in physics from the University of Washington.

  • by Dylan Scott
    £30.99

  • by Mohamed Elgendy
    £33.49

    Computer vision is central to many leading-edge innovations, including self-driving cars, drones, augmented reality, facial recognition, and much, much more. Amazing new computer vision applications are developed every day, thanks to rapid advances in AI and deep learning (DL). Deep Learning for Vision Systems teaches you the concepts and tools for building intelligent, scalable computer vision systems that can identify and react to objects in images, videos, and real life. With author Mohamed Elgendy's expert instruction and illustration of real-world projects, you'll finally grok state-of-the-art deep learning techniques, so you can build, contribute to, and lead in the exciting realm of computer vision! Key Features· Introduction to computer vision· Deep learning and neural network· Transfer learning and advanced CNN architectures· Image classification and captioning For readers with intermediate Python, math and machine learningskills. About the technology By using deep neural networks, AI systems make decisions based on their perceptions of their input data. Deep learning-based computer vision (CV) techniques, which enhance and interpret visual perceptions, makes tasks like image recognition, generation, and classification possible. Mohamed Elgendy is the head of engineering at Synapse Technology, a leading AI company that builds proprietary computer vision applications to detect threats at security checkpoints worldwide. Previously, Mohamed was an engineering manager at Amazon, where he developed and taught the deep learning for computer vision course at Amazon's Machine Learning University. He also built and managed Amazon's computer vision think tank, among many other noteworthy machine learning accomplishments. Mohamed regularly speaks at many AI conferences like Amazon's DevCon, O'Reilly's AI conference and Google's I/O.

  • by Miguel Morales
    £33.49

    We all learn through trial and error. We avoid the things that cause us to experience pain and failure. We embrace and build on the things that give us reward and success. This common pattern is the foundation of deep reinforcement learning: building machine learning systems that explore and learn based on the responses of the environment. Grokking Deep Reinforcement Learning introduces this powerful machine learning approach, using examples, illustrations, exercises, and crystal-clear teaching. You'll love the perfectly paced teaching and the clever, engaging writing style as you dig into this awesome exploration of reinforcement learning fundamentals, effective deep learning techniques, and practical applications in this emerging field.

  • by Vitaly Bragilevsky
    £42.49

    Turn the corner from ?Haskell student? to ?Haskell developer.? Haskell in Depth explores the important language features and programming skills you'll need to build production-quality software using Haskell. And along the way, you'll pick up some interesting insights into why Haskell looks and works the way it does. Get ready to go deep! Haskell in Depth is the perfect second book on Haskell. After a quick refresher on Haskell basics, this hands-on guide dives into examples and application scenarios designed to teach how Haskell works and how to apply it correctly. You'll learn about managing projects with Cabal and Stack, tackle error-handling and testing, and package programs and libraries for production deployment. Key Features· Organizing your projects with Cabal and Stack· Testing and profiling· Working with data· Building web services and networking apps· Using the sophisticated libraries like lens, vinyl, and servant Written for developers familiar with Haskell basics. About the technology As software becomes more complex, it's essential to program efficiently using tools and techniques that guarantee your applications will run correctly, grow easily, and last a long time. Haskell is a functional programming language that blends a mathematically-rigorous approach to software design with a tested ecosystem of tools and libraries you can use to build deployable applications.

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.