Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
When food is ingested, it remains in the mouth for a short period of time. Although this period is brief compared to the total food nutrient digestion and absorption time, it is crucially important, as it is the first step in digestion. It is also very important that, while the food is in the mouth, it is perceived by the senses and then a decision is made on swallowing. Oral sensory perception is an integrative response, which is generated in very short time (normally a few seconds) from complex information gathered from multiple sources during mastication and swallowing. Consequently, food oral processing studies include many orientations. This Special Issue brings together a small range of studies with a diversity of approaches that provide good examples of the complexity and multidisciplinarity of the subject.
Given that the threat of water shortage is expanding across the globe, the evolution of advanced technologies that enable water purification and, thus, water re-use in an energy and resource efficient manner are of great importance. In this regard, nanomaterials have been playing a crucial role and offering new opportunities for the construction of permeable and selective membranes and adsorbents. Such features are of paramount importance, particularly given the limited available energy resources. In this book, several recent studies are introduced that deal with water treatment via nanomaterial-based technologies. Such state-of-the-art technologies have employed nanomaterials that are made of polymer, composite, ceramic, and carbon, etc., and are shaped in various dimensionalities and forms such as particle (0D), fiber (1D), and film (2D-3D). The nanostructured membranes and adsorbents as well as photocatalytic nanosystems capable of active photodecomposition of organic pollutants, e.g., dyes, are the main focal points of discussion.
Each year, disasters such as storms, floods, fires, volcanoes, earthquakes, and epidemics cause thousands of casualties and tremendous damage to property around the world, displacing tens of thousands of people from their homes and destroying their livelihoods. The majority of these casualties and property loss could be prevented if better information were available regarding the onset and course of such disasters. Several remote sensing technologies, such as meteorological and Earth observation satellites, communication satellites, and satellite-based positioning, supported by geoinformation technologies, offer the potential to contribute to improved prediction and monitoring of potential hazards, risk mitigation, and disaster management which, in turn, would lead to sharp reductions in losses to life and property. This book explores most of the scientific issues related to spatially supported disaster management and its integration with geographical information system technologies in different disaster examples and scales. Dealing with disasters over space and time represents a long-lasting theme, now approached by means of innovative techniques and modelling approaches. Several priorities for actions are outlined toward preventing new and reduce existing disaster risks, including understanding disaster risk, strengthening disaster risk governance for management of disaster risk, investing in disaster reduction for resilience, and enhancing disaster preparedness for effective response. This book presents ideas to address the challenges facing different components of spatial patterns related to ecological processes, and the published articles extended versions of selected presentations from the Gi4DM Conference in 2019 in Prague.
This Systems Thinking Special Issue contains 12 papers on the nature of systems thinking as it applies to systems engineering, systems science, system dynamics, and related fields. Systems thinking can be broadly considered the activity of thinking applied in a systems context, forming a basis for fundamental approaches to several systems disciplines, including systems engineering, systems science, and system dynamics. Although these are somewhat distinct fields, they are bound by common approaches in regard to systems. Whereas systems engineering seeks to apply a multidisciplinary, holistic approach to the development of systems, systems science seeks to understand the basics related to systems of all kinds, from natural to man-made, and system dynamics seeks to understand system structures in order to influence its dynamics. Man-made systems have become more ubiquitous and complex. The study of systems, both natural and engineered, presents new challenges and opportunities to understand emergent, dynamic behaviors that inform the process of sense-making based on systems thinking.
The impacts of climate change on water resource management, as well as increasingly severe natural disasters over the last decades, have caught global attention. Reliable and accurate hydrological forecasts are essential for efficient water resource management and the mitigation of natural disasters. While the notorious nonlinear hydrological processes make accurate forecasts a very challenging task, it requires advanced techniques to build accurate forecast models and reliable management systems. One of the newest techniques for modeling complex systems is artificial intelligence (AI). AI can replicate the way humans learn and has great capability to efficiently extract crucial information from large amounts of data to solve complex problems. The fourteen research papers published in this Special Issue contribute significantly to the uncertainty assessment of operational hydrologic forecasting under changing environmental conditions and the promotion of water resources management by using the latest advanced techniques, such as AI techniques. The fourteen contributions across four major research areas: (1) machine learning approaches to hydrologic forecasting; (2) uncertainty analysis and assessment on hydrological modeling under changing environments; (3) AI techniques for optimizing multi-objective reservoir operation; (4) adaption strategies of extreme hydrological events for hazard mitigation. The papers published in this issue will not only advance water sciences but also help policymakers to achieve more sustainable and effective water resource management.
This Special Issue outlines the role of geoheritage and geotourism as potential touristic resources of a region. The term "geoheritage" refers to a particular type of natural resources represented by sites of special geological significance, rarity or beauty that are representative of a region and of its geological history, events, and processes. These sites are also known as "geosites" and, as well as archaeological, architectonic, and historical sites, can be considered as part of the cultural estate of a country. "Geotourism" is an emerging type of sustainable tourism, which concentrates on geosites, focusing on visitor knowledge, environmental education, and amusement. Geotourism may be very useful for geological sciences divulgation and may provide additional opportunities for the development of rural areas, generally not included among the main touristic attractions. The collected papers focused on these main topics with different methods and approaches and can be grouped as follows: i) papers dealing with geosite promotion and valorization in protected areas; ii) papers dealing with geosite promotion and valorization in non-protected areas; iii) papers dealing with geosite promotion by exhibition, remote sensing analysis, and apps; iv) papers investigating geotourism and geoheritage from tourists'' perspectives.
Rare kidney diseases comprise a large group of different life-threatening or chronically debilitating disorders that affect very small numbers of people (<1 in 2000 individuals in Europe and <200,000 in USA) with local or systemic manifestations. For several years, the research and development of treatments in this field have been neglected in favor of more common diseases. The main reasons for the lack of interest in rare kidney diseases seem to be the small numbers of patients and limited epidemiological data on the natural history of many of these diseases. Rare diseases can affect people differently. Even patients with the same condition can exhibit very different signs and symptoms, or there may be many subtypes of the same condition. This diversity constitutes a significant challenge to healthcare practitioners and scientists alike, in terms of being able to acquire sufficient experience for the most appropriate and timely definition, diagnosis, and management. Fortunately, in the last ten years, concerted efforts have led to a marked improvement in the understanding of these disorders. In particular, an important step forward has been taken with the employment of innovative technologies (including next-generation sequencing), in order to replace obsolete phenotypic classifications and to discover new useful diagnostic biomarkers. These new tools are, in fact, becoming part of routine clinical practice, increasing diagnostic accuracy and facilitating genetic counseling. Moreover, biomedical research, providing insights into the pathologies of these rare diseases and elucidating their underlying mechanisms, is revealing new therapeutic avenues and driving the industry to develop safer and more effective orphan drugs. Finally, in this field, it is desirable that, in the future, the crosstalk between basic scientists and clinicians could achieve a great clinical benefit by improving the quality of life of these patients as well. This Special Issue welcomes scientific contributions and critical reviews describing new pathogenetic insights, reporting novel and specific disease biomarkers, and underlying new pharmacological targets or therapies for rare diseases of the kidney and urinary tract.
In the field of Analytical Chemistry and, in particular, whenever a quali-quantitative analysis is required, until a few years ago, reference was made exclusively to instrumental methods (more or less hyphenated) which, once validated, were able to provide the answers to the questions present, even if only in a limited way to analytical targets. Nowadays, the landscape has become considerably complicated (natural adulterants, assessment of geographical origin, sophistication, need for non-destructive analysis, search for often unknown compounds), and new procedures for processing data have greatly increased the potential of analyses that are conducted (even routinely) in the laboratory. In this scenario, chemometrics is master, able to manage and process a huge amount of information based both on data relating only to the analytes of interest, but also by applying "general" procedures to process raw untargeted analysis data. It is within this strand of analysis that many of the works reported in this Special Issue fall. In the succession of works in this printed version, the criterion that guided us was to highlight how-starting exclusively from chromatographic techniques (HPLC and GC) with conventional detectors and moving to exclusively spectroscopic techniques (MS, FT-IR and Raman)-it is possible arrive at extremely powerful coupled techniques and procedures (HPLC and FT-IR) able to meet research needs. Finally, at the end of the printed volume, there are two reviews that surveying the state of the art regarding the assessment of authenticity through qualitative analyses and the application of chemometrics in the pharmaceutical field in the study of forced drug degradation products. From the succession of works (and, above all, from the various application fields) it can immediately be seen how the application of chemometrics and its procedures to both raw and processed data is a powerful means of obtaining robust, reproducible, and predictive information. In this manner, it is possible to create models able to explain and respond to the original problem in a much more detailed way. , and Honghe through Fourier transform mid infrared (FT-MIR) spectra combined with partial least squares discriminant analysis (PLS-DA), random forest (RF), and hierarchical cluster analysis (HCA) methods. Melucci and collaborators apply chemometric approaches to non-destructive analysis of ATR-FT-IR for the determination of biosilica content. This value was directly evaluated in sediment samples, without any chemical alteration, using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and the quantification was performed by combining the multivariate standard addition method (MSAM) with the net analyte signal (NAS) procedure to solve the strong matrix effect of sediment samples. Still in the food and food supplements field, Anguebes-Franseschi and collaborators report an article where 10 chemometric models based on Raman spectroscopy were applied to predict the physicochemical properties of honey produced in the state of Campeche, Mexico.
Climate change is increasing due to the anthropogenic emission of greenhouse gases. The majority of these are due to the production and consumption of energy. According to the latest estimates, global energy demand could triple by 2050, and by then, 70% of the world''s population will live in cities. The challenge for future cities is the implementation of a mechanism that minimizes the need for injection of new energy resources in them, so that a high level of self-sufficiency can be achieved through the concept of circular economy, thus partially mitigating the impacts of climate change. Using solar energy today is considered to be one of the best solutions that can be installed in buildings to help with this issue. This book addresses several relevant aspects related to energy saving at cities, including a deep survey of research topics and scientific collaborations in energy saving. The main research topics carried out are related to sustainability, solar energy, the use of rooftops for energy generation, energy conversion from urban biomass or residues, wind energy, and public and private urban energy saving.
The recent years have witnessed tremendous growth in connected vehicles due to major interest in vehicular ad hoc networks (VANET) technology from both the research and industrial communities. VANET involves the generation of data from onboard sensors and its dissemination in other vehicles via vehicle-to-everything (V2X) communication, thus resulting in numerous applications such as steep-curve warnings. However, to increase the scope of applications, VANET has to integrate various technologies including sensor networks, which results in a new paradigm commonly referred to as vehicular sensor networks (VSN). Unlike traditional sensor networks, every node (vehicle) in VSN is equipped with various sensing (distance sensors, GPS, and cameras), storage, and communication capabilities, which can provide a wide range of applications including environmental surveillance and traffic monitoring. VSN has the potential to improve transportation technology and the transportation environment due to its unlimited power supply and resulting minimum energy constraints. However, VSN faces numerous challenges in terms of its design, implementation, network scalability, reliability, and deployment over large-scale networks, which need to be addressed before it is realized. This book comprises 12 outstanding research works related to vehicular sensor networks, addressing various aspects such as security, routing, SDN, and NDN.
Marine fungal natural products are well-known as the "blue gold," as they have been promising leads for drug discovery and development. Even though marine fungi are less explored in comparison to their terrestrial counterparts, a number of useful hits have been obtained from a drug discovery perspective. Topics discussed in this book include a review on novel natural products from extremophilic fungi, secondary metabolites from deep-sea fungi; natural products from fungi in a symbiotic relationship with marine macro-organisms; and bioactive metabolites from sediment-derived fungi. Marine biologists, chemists, and pharmacologists will find the book a good reference material. The book covers various bioactive marine fungal natural products, and it is hoped that this book aids scientists explore fungal chemical diversity.
This book aims at promoting new and innovative studies, proposing new architectures or innovative evolutions of existing ones, and illustrating experiments on current technologies in order to improve the efficiency and effectiveness of distributed and cluster systems when they deal with spatiotemporal data.
The current power system should be renovated to fulfill social and industrial requests and economic advances. Hence, providing economic, green, and sustainable energy are key goals of advanced societies. In order to meet these goals, recent features of smart grid technologies need to have the potential to improve reliability, flexibility, efficiency, and resiliency. This book aims to address the mentioned challenges by introducing advanced approaches, business models, and novel techniques for the management and control of future smart grids.
This book summarizes the efforts of ten papers collected by the Special Issue "Condensed-Matter-Principia Based Information & Statistical Measures: From Classical to Quantum". It calls for papers which deal with condensed-matter systems, or their interdisciplinary analogs, for which well-defined classical-statistical vs. quantum information measures can be inferred while based on the entropy concept. The contents have mainly been rested upon objectives addressed by an international colloquium held on October 2019, in UTP Bydgoszcz, Poland (see http://zmpf.imif.utp.edu.pl/rci-jcs/rci-jcs-4/), with an emphasis placed on the achievements of Professor Gerard Czajkowski, who commenced his research activity with open diffusion-reaction systems under the supervision of Roman S. Ingarden (Toruń), a father of Polish synergetics, and original thermodynamic approaches to self-organization. The active cooperation of Professor Czajkowski, mainly with German physicists (Friedrich Schloegl, Aachen; Werner Ebeling, Berlin), ought to be highlighted. In light of this, a development of his research, as it has moved from statistical thermodynamics to solid state theory, pursued in terms of nonlinear solid-state optics (Franco Bassani, Pisa), and culminated very recently with large quasiparticles termed Rydberg excitons, and their coherent interactions with light, is worth delineating.
Pharmacogenomics is one of the emerging approaches to precision medicine, tailoring drug selection and dosing to the patient''s genetic features. In recent years, several pharmacogenetic guidelines have been published by international scientific consortia, but the uptake in clinical practice is still poor. Many coordinated international efforts are ongoing in order to overcome the existing barriers to pharmacogenomic implementation. On the other hand, existing validated pharmacogenomic markers can explain only a minor part of the observed clinical variability in the therapeutic outcome. New investigational approaches are warranted, including a study of the pharmacogenomic role of the immune system genetics and of previously neglected rare genetic variants, reported to account for a large part of inter-individual variability in drug metabolism. In this book, we have collected a series of articles covering many aspects of pharmacogenomics. These include clinical implementation of pharmacogenomics in clinical practice, development of tools or infrastructures to support this process, research of new pharmacogenomics markers to increase drug efficacy and safety, and the impact of rare genetic variants in pharmacogenomics.
Based on their potent antioxidant properties, the possible exploitation of natural phenolic compounds as food supplements as well as functional ingredients in the food and cosmetic industry is gaining more and more attention. This book contains original research articles and a review reporting innovative applications of natural phenolic compounds in the field of nutrition and biomedicine, as active ingredients for the prevention of oxidative-stress-related diseases, and as additives in smart food packaging, biomedical devices, and cosmetic products. The growing importance of agri-food wastes as easily accessible sources of phenolic compounds as well as of synthetic derivatives of natural compounds with improved antioxidant properties is also highlighted. Finally, novel technologies to improve extraction yields, stability, bioavailability, and delivery of antioxidant compounds for healthcare products or for skin applications are described.
This book provides reviews and primary research articles that discuss the replication, repair, maintenance, and structures of plant organelle genomes. Rearrangements of these genomes are common and provide a way to distinguish closely related plant species. Some articles in the book discuss recent advances in identifying specific proteins and potential mechanisms involved in DNA replication, recombination, and repair in plant mitochondria and chloroplasts.
The use of unmanned aerial vehicles (UAVs) plays an important role in supporting human activities. Man is concentrating more and more on intellectual work, and trying to automate practical activities as much as possible in order to increase their efficiency. In this regard, the use of drones is increasingly becoming a key aspect of this automation process, offering many advantages, including agility, efficiency and reduced risk, especially in dangerous missions. Hence, this Special Issue focuses on applications, platforms and services where UAVs can be used as facilitators for the task at hand, also keeping in mind that security should be addressed from its different perspectives, ranking from communications security to operational security, and furthermore considering privacy issues.
Antimicrobial resistance (AMR) is a global problem with extremely complex epidemiology involving the direct and indirect transmission of antibiotic resistant pathogens and mobile genetic elements between humans, animals, and the environment. AMR is, therefore, recognized as a ''One Health'' issue. Data that describe AMR prevalence and trends are required to enable the judicious and prudent use of antimicrobials in animals, which has implications both from veterinary and animal welfare aspects as well as from a zoonotic and public health perspective. Horses are a potential reservoir of AMR for humans due to close human-animal contact, as was demonstrated with shared human and horse methicillin-resistant Staphylococcus aureus (MRSA) strains causing outbreaks in equine hospitals. Extended-spectrum beta-lactamase-producing Enterobacteriaceae, considered as clinically and economically important to the AMR burden in human and veterinary medicine, has been reported in both community and clinic equine populations. Strains of Enterobacteriaceae pose a major worldwide threat due to the geographical expansion of ESBL-producing clones as well as the horizontal interspecies dissemination of ESBL-encoding plasmids and genes. In human medicine, ESBL-E infection is associated with increased morbidity, mortality, length of hospital stay, delay of targeted appropriate treatment, and higher costs. These issues also need to be addressed in horses. This Special Issue on AMR in horses encompasses several papers that describe the prevalence, risk factors, and molecular data on MDR bacteria in healthy horses in Canada, Japan, Spain, and Israel, in addition to papers that describe the clinical impact of MDR bacteria in diseased horses in Austria, USA, France and Israel.
"Smart Sensing Technologies for Agriculture" is a Special Issue of Sensors that includes 14 research papers on diverse topics about the measurement of physical, chemical, and biological characteristics of soil, plants, and animals related to modern farming practices.
This issue brings together a collection of papers that provide economic insights into the modern energy market, which is still dominated by crude oil but has expanded to incorporate new energy sources in the form of coal, natural gas, and a mixture of renewable energy sources. Given the differences in the dynamics at play with different energy sources, particularly in relation to price determination, the impact they have on the environment, their importance in the energy mix and energy policy, and so forth, it has become imperative to check their behavior using economic models. Papers 1-3 provide some perspective on oil price determination by focusing on the time-varying nature of supply shocks linked to oil producers (Paper 1), OPEC''s announcements (2), and the heterogeneous interconnections of supply or demand shocks over time horizons and different countries (3). Papers 4-6 compare different energy sources within the energy market and other markets (4); explore the importance of energy storage in the electricity market (5); and examine the dynamic relationship between prices of substitutes (oil price) on the natural gas market in China (6). The final four studies examine the impact of renewable and nonrenewable energy on the macroeconomy and the environment.
The paradigm in the design of all human activity that requires energy for its development must change from the past. We must change the processes of product manufacturing and functional services. This is necessary in order to mitigate the ecological footprint of man on the Earth, which cannot be considered as a resource with infinite capacities. To do this, every single process must be analyzed and modified, with the aim of decarbonising each production sector. This collection of articles has been assembled to provide ideas and new broad-spectrum contributions for these purposes.
In recent years, the advances and abilities of computer software have substantially increased the number of scientific publications that seek to introduce new probabilistic modelling frameworks, including continuous and discrete approaches, and univariate and multivariate models. Many of these theoretical and applied statistical works are related to distributions that try to break the symmetry of the normal distribution and other similar symmetric models, mainly using Azzalini''s scheme. This strategy uses a symmetric distribution as a baseline case, then an extra parameter is added to the parent model to control the skewness of the new family of probability distributions. The most widespread and popular model is the one based on the normal distribution that produces the skewed normal distribution. In this Special Issue on symmetric and asymmetric distributions, works related to this topic are presented, as well as theoretical and applied proposals that have connections with and implications for this topic. Immediate applications of this line of work include different scenarios such as economics, environmental sciences, biometrics, engineering, health, etc. This Special Issue comprises nine works that follow this methodology derived using a simple process while retaining the rigor that the subject deserves. Readers of this Issue will surely find future lines of work that will enable them to achieve fruitful research results.
In recent years, various families of fractional-order integral and derivative operators, such as those named after Riemann-Liouville, Weyl, Hadamard, Grunwald-Letnikov, Riesz, Erdelyi-Kober, Liouville-Caputo, and so on, have been found to be remarkably important and fruitful, due mainly to their demonstrated applications in numerous seemingly diverse and widespread areas of the mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order operators provide interesting, potentially useful tools for solving ordinary and partial differential equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus analogues and extensions of each of these equations; and various other problems involving special functions of mathematical physics and applied mathematics, as well as their extensions and generalizations in one or more variables. For this Special Issue, we invite and welcome review, expository, and original research articles dealing with the recent advances in the theory of fractional-order integral and derivative operators and their multidisciplinary applications.
Arterial hypertension affects about 1 billion people worldwide and it is the strongest modifiable risk factor for cardiovascular disease and related disability. Since the initial discovery of rare monogenic disorders with large effects, the role of genomics has evolved into large genome-wide association studies detecting common variants with a modest effect size. Similarly, pharmacogenomics has emerged as a new tool for understanding variability in drug response, to maximize efficacy and reduce toxicity. This book presents the most recent advances in the field of genetics and genomics of arterial hypertension and their potential impact on clinical management. The book is a useful tool for clinicians but also to the research community and those who want to be updated in the field.
The paradigm in the design of all human activity that requires energy for its development must change from the past. We must change the processes of product manufacturing and functional services. This is necessary in order to mitigate the ecological footprint of man on the Earth, which cannot be considered as a resource with infinite capacities. To do this, every single process must be analyzed and modified, with the aim of decarbonising each production sector. This collection of articles has been assembled to provide ideas and new broad-spectrum contributions for these purposes.
This Special Issue includes manuscripts about soil erosion and degradation processes and the accelerated rates due to hydrological processes and climate change. The new research included in this issue focuses on measurements, modeling, and experiments in field or laboratory conditions developed at different scales (pedon, hillslope, and catchment). This Special Issue received investigations from different parts of the world such as Ethiopia, Morocco, China, Iran, Italy, Portugal, Greece, and Spain, among others. We are happy to see that all papers presented findings characterized as unconventional, provocative, innovative, and methodologically new. We hope that the readers of the journal Water can enjoy and learn about hydrology and soil erosion using the published material, and share the results with the scientific community, policymakers, and stakeholders to continue this amazing adventure, facing plenty of issues and challenges.
In recent years, the industrial environment has been changing radically due to the introduction of concepts and technologies based on the fourth industrial revolution, also known as Industry 4.0. After the introduction of Industry 4.0 in large enterprises, SMEs have moved into the focus, as they are the backbone of many economies. Small organizations are increasingly proactive in improving their operational processes, which is a good starting point for introducing the new concepts of Industry 4.0. The readiness of SME-adapted Industry 4.0 concepts and the organizational capability of SMEs to meet this challenge exist only in some areas. This reveals the need for further research and action plans for preparing SMEs in a technical and organizational direction. Therefore, special research and investigations are needed for the implementation of Industry 4.0 technologies and concepts in SMEs. SMEs will only achieve Industry 4.0 by following SME-customized implementation strategies and approaches and realizing SME-adapted concepts and technological solutions. Thus, this Special Issue represents a collection of theoretical models as well as practical case studies related to the introduction of Industry 4.0 concepts in small- and medium-sized enterprises.
The availability (and the development) of innovative approaches to quantitative analyses and the data processing are often mandatory to deeply characterize a sample and to correctly highlight the analytical target. These objectives are carried out either by simply improving a single aspect of the analytical protocol or by developing a synergy of steps (from extraction to instrumental configuration to chemometric approaches) to obtain the maximum analytical information sought. Examples are innovative extraction protocols (also following the recent guidelines on green analytical chemistry) or new materials for the selective extraction of target compounds, multi-analytes screening methods, and "untargeted" approaches for food applications. In this text, the various articles are attributable to these elements, in particular, we start with a multi-analyte method for the determination of 10 different cannabinoids from Cannabis sativa L. by means of conventional techniques (Mandrioli and coworkers), to then see the application of techniques hyphenated "ultra-fast" by UPLC-MS for the authentication of food products (Xue and coworkers). The work of Song and coworkers on these applications in food products is also interesting, as it highlights how the collection process (and the timing of this passage) can affect the chemical profile and, consequently, the biological activity of Panax ginseng. Mocan and coworkers, applying an innovative extraction technique based on microwaves and applying well-known, robust, and easy-to-use instrumentation, have demonstrated how it is possible to discriminate between various species of Galium and how the chemical profiles obtained can support the biological activities observed. Similarly, but with the aim of developing new sample pretreatment procedures, Maggira and collaborators have developed graphene oxide-based materials for the selective extraction of sulfonamides in milk. Shen and coworkers apply a different type of approach, the "untargeted" one, for the geographical characterization of the Gentian Rigescens for which they combine chemometric techniques for the processing of raw chemical profile data. Wang and coworkers report a multiclass screening of drugs with high-resolution mass spectrometry through which they manage to obtain a high-scale, fast screening method for pesticides in fishery drugs based on ultrahigh-performance liquid chromatography tandem quadrupole-orbitrap high-resolution mass spectrometer.
Sustainable value management reveals a new space for studying business models. The traditional approach is based on the assumption that the goal of any business is to make money. All decisions regarding supply and production should be made to maximize profit. The discrepancy in creating non-economic value is sometimes the result of separating ownership from control over an enterprise. Although shareholders are interested in maximizing profit, management that actually makes decisions can also pursue other goals. In addition to economic aspects, the management intentions of modern managers are also influenced by factors arising from the organizational culture built, co-created within the organization and sometimes with the participation of external actors such as suppliers and customers. The sources of the creation of social values will be the management intentions of top management, often initiated by the adopted values and rules on the basis of which resources are bound within the structure of the business model. The value of sustainability is based on the identification of those creative sources that relate to economic and social value. Economic value is created through social value and vice versa. This allows the complementarity of the value created to be mutually supportive. The business model that integrates both of these values should be more resistant to crises than the one that is oriented only toward producing economic value. Concurrent implementation of economic and social goals increases resilience and affects the success of modern business models. This is due to the specificity of the business ecosystem that is built as part of the business model, which, in essence, is based on the use of social factors to merge the business model into a complex ecosystem capable of producing value.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.