Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
Spectral lines, widths, and shapes are powerful tools for emitting/absorbing gas diagnostics in different astrophysical objects (from the solar system to the most distant objects in the universe—quasars). On the other hand, experimental and theoretical investigations of laboratory plasma have been applied in spectroscopic astrophysical research, especially in research on atomic data needed for line shape calculations. Data on spectral lines and their profiles are also important for diagnostics, analysis, and the modelling of fusion plasma, laser-produced plasma, laser design and development, and various plasmas in industry and technology, like light sources based on plasmas or the welding and piercing of metals by laser-produced plasma. The papers from this book can be divided into four groups: 1. stark broadening data for astrophysical and laboratory plasma investigations; 2. applications of spectral lines for astrophysical and laboratory plasma research; 3. spectral line phenomena in extragalactic objects, and 4. laboratory astrophysics results for spectra investigation. The reviews and research papers, representing new research on the topics presented in this book, are of interest for specialists and PhD students. We hope that the present book will be useful and interesting for scientists interested in the investigation of spectral line shapes and will contribute to the education of young researchers and PhD students.
The major histocompatibility complex (MHC) is a highly polymorphic and diverse multigene locus in all jawed vertebrate species that has an integral role in adaptive/innate immune systems, transplantation, and infectious and autoimmune diseases. The MHC supra-locus in mammalian vertebrates is usually partitioned into three distinct regions, known as classes I, II, and III, which, to varying extents, can be found conserved in nonmammalian jawed vertebrates, such as bony fish, amphibians, and bird lineages. The MHC gene region is characterized particularly by the expression of class I and class II glycoproteins that bind peptides derived from intracellular or extracellular antigens to circulating T-cells. While this expressed antigenic specificity remains the predominant interest with respect to MHC function and polymorphism in a population, a broader concept has emerged that examines the MHC as a multifunctional polymorphic controller that facilitates and regulates genome diversity with a much greater array of functions and effects than just MHC-restricted antigen recognition. This volume of 19 reprints presented by various experts and collected from the Special Issue of Cells on “MHC in Health and Disease” covers a broad range of topics on the genomic diversity of the MHC regulatory system in various vertebrate species, including MHC class I, II, and III genes; innate and adaptive immunity; neurology; transplantation; haplotypes; infectious and autoimmune diseases; fecundity; conservation; allelic lineages; and evolution. Taken together, these articles demonstrate the immense complexity and diversity of the MHC structure and function within and between different vertebrate species.
The book entitled Medicinal Plants and Natural Product Research describes various aspects of ethnopharmacological uses of medicinal plants; extraction, isolation, and identification of bioactive compounds from medicinal plants; various aspects of biological activity such as antioxidant, antimicrobial, anticancer, immunomodulatory activity, etc., as well as characterization of plant secondary metabolites as active substances from medicinal plants.
The role and value of science within sport increases with ever greater professionalization and commercialization. Scientific and technological innovations are devised to increase performance, ensure greater accuracy of measurement and officiating, reduce risks of harm, enhance spectatorship, and raise revenues. However, such innovations inevitably come up against epistemological and metaphysical problems related to the nature of sport and physical competition. This Special Issue identifies and explores key and contemporary philosophical issues in relation to the science of sport and exercise. It is divided into three sections: 1. Scientific evidence, causation, and sport; 2. Science technology and sport officiating; and 3. Scientific influences on the construction of sport. It brings together scholars working on philosophical problems in sport to examine issues related to the values and assumptions behind sport and exercise science and key problems resulting from these and to provide recommendations for improving its practice.
Traditionally, livestock manure has been used to provide nutrients for plant growth and to improve soil conditions. However, the increase in concentrated animal feeding operations (CAFOs) results in high levels of plant nutrients, such as nitrogen and phosphorus, in the proximal crop and pasturelands as a result of applying more manure than what is required to meet the local plant nutrient demand. Soil runoff and leaching of land-applied manure can enrich the surface and ground water with nitrogen and phosphorus, leading to eutrophication and hypoxia. In addition, overapplication of animal manure contributes to pathogen spread, the release of hormones and other pharmaceutically active compounds, and the emission of ammonia, greenhouse gases, and odorous compounds. In this Special Issue, we present 11 interesting articles covering the production of renewable energy and fuels, extraction of ammonia from animal manure, the agricultural and environmental benefits of using animal manure or its derived materials such as biochar or ashes, and the difference in microbial communities and pathogen survival after anaerobic lagoon treatment.
Nanomedicine represents one of the most investigated areas in the last two decades in the field of pharmaceutics. Several nanovectors have been developed and a growing number of products have been approved. It is well known that many biomaterials are able to self-organize under controlled conditions giving rise nanostructures. Polymers, lipids, inorganic materials, peptides and proteins, and surfactants are examples of such biomaterials and the self-assembling property can be exploited to design nanovectors that are useful for drug delivery. The self-organization of nanostructures is an attractive approach to preparing nanovectors, avoiding complex and high-energy-consuming preparation methods, and, in some cases, facilitating drug loading procedures. Moreover, preparations based on these biocompatible and pharmaceutical grade biomaterials allow an easy transfer from the lab to the industrial scale. This book reports ten different works, and a review, aiming to cover multiple strategies and pharmaceutical applications in the field of self-organizing nanovectors for drug delivery.
Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.
"Information Theory and Language" is a collection of 12 articles that appeared recently in Entropy as part of a Special Issue of the same title. These contributions represent state-of-the-art interdisciplinary research at the interface of information theory and language studies. They concern in particular: ¿ Applications of information theoretic concepts such as Shannon and Rényi entropies, mutual information, and rate-distortion curves to the research of natural languages; ¿ Mathematical work in information theory inspired by natural language phenomena, such as deriving moments of subword complexity or proving continuity of mutual information; ¿ Empirical and theoretical investigation of quantitative laws of natural language such as Zipf's law, Herdan's law, and Menzerath-Altmann's law; ¿ Empirical and theoretical investigations of statistical language models, including recently developed neural language models, their entropies, and other parameters; ¿ Standardizing language resources for statistical investigation of natural language; ¿ Other topics concerning semantics, syntax, and critical phenomena. Whereas the traditional divide between probabilistic and formal approaches to human language, cultivated in the disjoint scholarships of natural sciences and humanities, has been blurred in recent years, this book can contribute to pointing out potential areas of future research cross-fertilization.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.