Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
In 2011, carbohydrates provided 63% of the dietary energy intake to the world’s population. Historically, carbohydrate-rich diets have been associated with good health and longevity but there has been a move away from traditional carbohydrate-rich diets, with refined carbohydrate taking much criticism for contributing to non-communicable disease. The aim of this Special Issue is to discuss the appropriate use of environmentally sustainable carbohydrate-rich foods in the modern diet in developing and developed countries in the context of prevention and treatment of non-communicable disease.
The synthesis of compounds or chiral building blocks with the desired configuration is one of the greatest challenges of chemistry, and is of the great interest in fields such as analytical chemistry and especially in fine and pharmaceutical chemistry. For this, different biocatalysts (i.e., cells, enzymes, catalytic antibodies, or ribozymes) have been used to catalyze different processes used, even on an industrial scale. Biocatalysts have a high activity under very mild conditions, such as ambient temperature, neutral pH, and atmospheric pressure. They are also able to catalyze highly selective and specific modifications in different substrates with high complexity, allowing the synthesis of enantiomerically pure compounds either by resolution processes or by asymmetric synthesis from prochiral substrates or regioselective modifications in complex molecules. This avoids side reactions as well as costly purification processes.In addition to the pure biocatalysts that are traditionally used, in recent years, different hybrid catalysts have been developed that combine the good catalytic properties of traditional biocatalysts with the properties of organometallic catalysts. In this way, different mixed catalysts have been developed as artificial metalloenzymes combining enzymatic and metallic catalytic activities, expanding the applicability to different systems, such as cascade processes.
This Special Issue of Sustainability reports on recent research aiming to make the freight transport sector more sustainable. The sector faces significant challenges in different domains of sustainability, including the reduction of greenhouse gas emissions and the management of health and safety impacts. In particular, the intention to decarbonise the sector’s activities has led to a strong increase in research efforts—this is also the main focus of the Special Issue. Sustainable freight transport operations represent a significant challenge with multiple technical, operational, and political aspects. The design, testing, and implementation of interventions require multi-disciplinary, multi-country research. Promising interventions are not limited to introducing new transport technologies, but also include changes in framework conditions for transport, in terms of production and logistics processes. Due to the uncertainty of impacts, the number of stakeholders, and the difficulty of optimizing across actors, understanding the impacts of these measures is not a trivial problem. Therefore, research is not only needed on the design and evaluation of individual interventions, but also on the approach of their joint deployment through a concerted public/private programme. This Special Issue addresses both dimensions, in two distinct groups of papers—the programming of interventions and the individual sustainability measures themselves.
Welding technology has been taken for granted as a mature and established technology for too long. However, many new welding technologies have been included among the alternatives to joining materials. They come both from the areas of fusion and solid-state welding. Moreover, a recent approach has offered one more alternative. This is hybrid welding, which couples two or more welding sources in a cooperative or synergic welding mode. Welding engineers and scientists have the task to understand which is the best technology for a specific application. This task requires deep knowledge and great intelligence to tackle the challenge of producing light and smart structures and products.In this book, a glimpse of recent developments in metal alloy welding is presented. Laser, friction, and arc welding are the main protagonists of the papers that are included. Processes, materials, and tools are described and studied along with investigation procedures and numerical simulations.This book will make you aware of most of the subjects discussed in the scientific community and new potentialities of welding as a leading technology in manufacturing.I hope you enjoy reading this Special Issue, "Advances in Welding Metal Alloys, Dissimilar Metals and Additively Manufactured Parts".
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.