Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
For the 250th birthday of Joseph Fourier, born in 1768 in Auxerre, France, this MDPI Special Issue will explore modern topics related to Fourier Analysis and Heat Equation.Modern developments of Fourier analysis during the 20th century have explored generalizations of Fourier and Fourier–Plancherel formula for non-commutative harmonic analysis, applied to locally-compact, non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups. One should add the developments, over the last 30 years, of the applications of harmonic analysis to the description of the fascinating world of aperiodic structures in condensed matter physics. The notions of model sets, introduced by Y. Meyer, and of almost periodic functions, have revealed themselves to be extremely fruitful in this domain of natural sciences.The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties.One last comment concerns the fundamental contributions of Fourier analysis to quantum physics: Quantum mechanics and quantum field theory.The content of this Special Issue will highlight papers exploring non-commutative Fourier harmonic analysis, spectral properties of aperiodic order, the hypoelliptic heat equation, and the relativistic heat equation in the context of Information Theory and Geometric Science of Information.
As technology becomes an ever-more prevalent part of everyday life, and population-based physical activity programs seek new ways to increase life-long engagement with physical activity, these two ideas have become increasingly linked. This Special Issue attempts to offer a thorough and critical examination of emerging technologies in physical activity and health promotion, considering technological interventions in different contexts (communities, clinics, schools, homes, etc.) among various populations, exploring the challenges of integrating technology into physical activity promotion, and offering solutions for its implementation. This Special Issue aims to take a broadly positive stance toward interactive technology initiatives and, while discussing some negative implications of an increased use of technology, offers practical recommendations for promoting physical activity through various emerging technologies, including, but not limited to: Active video games (exergaming); social media; mobile device apps; health wearables; mobile games, augmented reality games, global positioning and geographic information systems; and virtual reality. Offering a logical and clear critique of emerging technologies in physical activity and health promotion, this Special Issue will provide useful suggestions and practical implications for researchers, practitioners, and educators in the fields of public health, kinesiology, physical activity and health, and healthcare.
This book is the definitive reference regarding the global status of melioidosis in 2018. Melioidosis is one of the most neglected tropical diseases (NTDs), so much so that it is not even included in the WHO list of NTDs. Yet modeling suggests that it kills more people worldwide every year than diseases that are much better known, such as leptospirosis and dengue. The reasons for this under-recognition are numerous, including the fact that it mainly affects the disadvantaged rural poor in areas that are poorly supplied with the diagnostic capability to make the diagnosis. In 22 separate articles, expert authors from around the world have summarized what is known about the burden of the disease in humans and animals and the presence of the causative bacterium in the environment in their countries or regions. They have also identified the main obstacles and challenges to establishing the true burden, and to ensure that patients receive accurate diagnosis and optimal care for this all too frequently fatal disease. Rather than focusing on the theoretical risk of the use of Burkholderia pseudomallei as a biological weapon, this book highlights its importance as a clear and present danger to global public health.
Gene cloning and sequence has provided the opportunity to identify and characterize the functional role of biomarkers expressed in and on tumor cells and the surrounding microenvironment. Molecular and immunologic heterogeneity of cells in the tumor microenvironment contributes to instability, enhanced angiogenesis, and drug resistance of the tumor cell. Since tumor cells are the ultimate therapeutic targets for drugs and therapy development, the tumor microenvironment that regulates the growth and the delivery of effective drug concentrations to tumor cells is the gatekeeper. Thus, to have a significant impact on the overall survival and cure of patients with advanced cancer, the stabilization of the tumor microenvironment should be the initial treatment, followed by treatment that targets and kills tumor cells.Antiangeogenic therapies hold considerable promise in the treatment of a subset of cancer patients and are reported to have a significant impact on the stabilization of the tumor microenvironment. More recently, selenium-containing molecules, such as se-metylselenocysteine, seleno-L-methionine, and selenized yeast, among others, have been shown to target and modulate biomarkers associated with tumor cells and the tumor microenvironment. The effects are selenium type-, dose-, and schedule-dependent. The pleiotropic actions of selenium are necessary for tumor cell sensitization, and synergy with mechanism-based combinations. This Special Issue is devoted to highlighting evidence for the potential role of specific types, doses, and schedules of selenium alone and in combination with mechanism-based biologic and cytotoxic therapies for the prevention and treatment of cancer and related diseases. The collection of contributions should provide a comprehensive overview of the pharmacology, metabolism, and delineation of the pleiotropic action of different types of selenium molecules, relevant to the use of selenium as a potential modulator of the therapeutic efficacy and toxicity of biologic and cytotoxic therapies for cancer and related diseases. The pleiotropic action of specific types of selenium, doses, and schedule, as a selective and efficacious modulator of genetic, immunologic, and epigenetic biomarkers, should stimulate expanded preclinical research that could ultimately impact the development of new and novel approaches for the treatment of cancer.
Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.
Wineries are facing new challenges due to actual market demands for the creation of products exhibiting more particular flavors. In addition, climate change has lead to the requirement for grape varieties with specific features, such as convenient maturation times, enhanced tolerance towards dryness, osmotic stress, and resistance against plant-pathogens. The next generation of yeast starter cultures should produce wines with an appealing sensory profile and less alcohol. This Special Issue comprises actual studies addressing some of the problems and solutions for the environmental, technical, and consumer challenges of wine making today:Development of sophisticated mass spectroscopic methods enable the identification of the major metabolite spectrum of grapes/wine and deliver detailed insights in terroir and yeast-specific traits;Knowledge of the origin and reactions of reductive sulphur compounds facilitates the avoidance of unpleasant wine odors;Innovative physical–chemical treatments support effective and sustainable color extraction from red grape varieties;Enological enzymes from yeasts used directly or in the form of starter cultures are promising tools to increase the juice yields, color intensity, and aroma of wine;Natural and artificial Saccharomyces hybrids as well as collections of adapted wild isolates from various ecological niches will extend winemakers repertoire, allowing individual fermentations;Exact process control of wine fermentations by convenient computer programs will guarantee consistently high product quality.
Since the first attempts at structure-based drug design about four decades ago, molecular modelling techniques for drug design have developed enormously, along with the increasing computational power and structural and biological information of active compounds and potential target molecules. Nowadays, molecular modeling can be considered to be an integral component of the modern drug discovery and development toolbox. Nevertheless, there are still many methodological challenges to be overcome in the application of molecular modeling approaches to drug discovery. The eight original research and five review articles collected in this book provide a snapshot of the state-of-the-art of molecular modeling in drug design, illustrating recent advances and critically discussing important challenges. The topics covered include virtual screening and pharmacophore modelling, chemoinformatic applications of artificial intelligence and machine learning, molecular dynamics simulation and enhanced sampling to investigate contributions of molecular flexibility to drug–receptor interactions, the modeling of drug–receptor solvation, hydrogen bonding and polarization, and drug design against protein–protein interfaces and membrane protein receptors.
As the ultimate information processing device, the brain naturally lends itself to being studied with information theory. The application of information theory to neuroscience has spurred the development of principled theories of brain function, and has led to advances in the study of consciousness, as well as to the development of analytical techniques to crack the neural code—that is, to unveil the language used by neurons to encode and process information. In particular, advances in experimental techniques enabling the precise recording and manipulation of neural activity on a large scale now enable for the first time the precise formulation and the quantitative testing of hypotheses about how the brain encodes and transmits the information used for specific functions across areas.This Special Issue presents twelve original contributions on novel approaches in neuroscience using information theory, and on the development of new information theoretic results inspired by problems in neuroscience.
The use of solid catalysts for the upgrade of renewable sources gives the opportunity to combine the two main cores of green chemistry, that is, on the one hand, the set-up of sustainable processes and, on the other, the use of biomass-derived materials. Solid catalysts have taken on a leading role in traditional petrochemical processes and could represent a key tool in new biorefinery-driven technologies.This book will cover topics related to the preparation and use of heterogeneous catalytic systems for the transformation of renewable sources, as well as of materials deriving from agro-industrial wastes and by-products. At the same time, the ever-increasing importance of bioproducts, due to the acceptance and request of consumers, makes the upgrade of biomass into chemicals and materials not only an environmental issue, but also an economical advantage.
A multidisciplinary collection of papers dealing with many aspects of the wide world of carbonates, from a geological interpretation to their environmental exploitation and biological application, keeping an eye on the fundamentals of crystal growth.
Plants have served mankind as an important source of foods and medicines. While we all consume plants and their products for nutritional support, a majority of the world population also rely on botanical remedies to meet their health needs, either as their own “traditional medicine” or as “complementary and alternative medicine”. From a pharmaceutical point of view, many compounds obtained from plant sources have long been known to possess bio/pharmacological activities, and historically, plants have yielded many important drugs for human use, from morphine discovered in the early nineteenth century to the more recent paclitaxel and artemisinin. Today, we are witnessing a global resurgence in interest and use of plant-based therapies and botanical products, and natural products remain an important and viable source of lead compounds in many drug discovery programs. This Special Issue on “Plant Natural Products for Human Health” compiles a series of scientific reports to demonstrate the medicinal potentials of plant natural products. It covers a range of disease targets, such as diabetes, inflammation, cancer, neurological disease, cardiovascular disease, liver damage, bacterial, and fungus infection and malarial. These papers provide important insights into the current state of research on drug discovery and new techniques. It is hoped that this Special Issue will serve as a timely reference for researchers and scholars who are interested in the discovery of potentially useful molecules from plant sources for health-related applications.
At present, the impact of distributed energy resources in the operation of power and energy systems is unquestionable at the distribution level, but also at the whole power system management level. Increased flexibility is required to accommodate intermittent distributed generation and electric vehicle charging. Demand response has already been proven to have a great potential to contribute to an increased system efficiency while bringing additional benefits, especially to the consumers. Distributed storage is also promising, e.g., when jointly used with the currently increasing use of photovoltaic panels.This book addresses the management of distributed energy resources. The focus includes methods and techniques to achieve an optimized operation, to aggregate the resources, namely, by virtual power players, and to remunerate them. The integration of distributed resources in electricity markets is also addressed as a main drive for their efficient use.
This book contains the best and most up-to-date contributions in the field of late stage stellar evolution, as presented at the APNVII conference in Hong Kong in December 2017. A total of 60 scientists from 20 countries gathered to present, listen, interact and discuss the most current issues and problems in planetary nebulae and related objects research. The emphasis of this influential series of meetings, which was the seventh occasion over the last 20 years, has always been on the hypothesized and observed physical shaping mechanisms of the ejected nebulae that have such wonderful and intriguing forms. This special Galaxies conference issue of fully refereed contributions brings together a representative compilation of the meeting presentations in paper form. It captures the current “snap shot” status of this research field in some real sense. Such proceedings are well received and can be used as a reference material by both participants and all others working in the field for years to come.
Molecular magnets show many properties not met in conventional metallic magnetic materials, i.e. low density, transparency to electromagnetic radiation, sensitivity to external stimuli such as light, pressure, temperature, chemical modification or magnetic/electric fields, and others. They can serve as “functional” materials in sensors of different types or be applied in high-density magnetic storage or nanoscale devices. Research into molecule-based materials became more intense at the end of the 20th century and is now an important branch of modern science. The articles in this Special Issue, written by physicists and chemists, reflect the current work on molecular magnets being carried out in several research centers. Theoretical papers in the issue concern the influence of spin anisotropy in the low dimensional lattice of the resulting type of magnet, as well as thermodynamics and magnetic excitations in spin trimers. The impact of external pressure on structural and magnetic properties and its underlying mechanisms is described using the example of Prussian blue analogue data. The other functionality discussed is the magnetocaloric effect, investigated in coordination polymers and high spin clusters. In this issue, new molecular magnets are presented: (i) ferromagnetic high-spin [Mn6] single-molecule magnets, (ii) solvatomagnetic compounds changing their structure and magnetism dependent on water content, and (iii) a family of purely organic magnetic materials. Finally, an advanced calorimetric study of anisotropy in magnetic molecular superconductors is reviewed.
Volcanoes release plumes of gas and ash to the atmosphere during episodes of passive and explosive behavior. These ejecta have important implications for the chemistry and composition of the troposphere and stratosphere, with the capacity to alter Earth's radiation budget and climate system over a range of temporal and spatial scales. Volcanogenic sulphur dioxide reacts to form sulphate aerosols, which increase global albedo, e.g., by reducing surface temperatures, in addition to perturbing the formation processes and optical properties of clouds. Released halogen species can also deplete stratospheric and tropospheric ozone. Volcanic degassing, furthermore, played a key role in the formation of Earth’s atmosphere, and volcanic plumes can affect air quality, pose hazards to aviation and human health, as well as damage ecosystems. The chemical compositions and emission rates of volcanic plumes are also monitored via a range of direct-sampling and remote-sensing instrumentation, in order to gain insights into subterranean processes, in the respect of the magmatic bodies these volatiles exsolve from. Given the significant role these gases play in driving volcanic activity, e.g., via pressurisation, the study of volcanic plumes is proving to be an increasingly fruitful means of improving our understanding of volcanic systems, potentially in concert with observations from geophysics and contributions from fluid dynamical modelling of conduit dynamics.This Special Issue is aimed at presenting the state of the art of the multidisciplinary science concerning all aspects of volcanic plumes, of relevance to the volcanology, climatology, atmospheric science, and remote sensing communities.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.