Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
Networks of coordinated interactions among biological entities govern a myriad of biological functions that span a wide range of both length and time scales—from ecosystems to individual cells and from years to milliseconds. For these networks, the concept “the whole is greater than the sum of its parts” applies as a norm rather than an exception. Meanwhile, continued advances in molecular biology and high-throughput technology have enabled a broad and systematic interrogation of whole-cell networks, allowing the investigation of biological processes and functions at unprecedented breadth and resolution—even down to the single-cell level. The explosion of biological data, especially molecular-level intracellular data, necessitates new paradigms for unraveling the complexity of biological networks and for understanding how biological functions emerge from such networks. These paradigms introduce new challenges related to the analysis of networks in which quantitative approaches such as machine learning and mathematical modeling play an indispensable role. The Special Issue on “Biological Networks” showcases advances in the development and application of in silico network modeling and analysis of biological systems.
This book covers topics ranging from a detailed error analysis of SSTs to new applications employed, for example, in the study of the El Niño–La Niña Southern Oscillation, lake temperatures, and coral bleaching. New techniques for interpolation and algorithm development are presented, including improvements for cloud detection. Analysis of the pixel-to-pixel uncertainties provides insight to applications for high spatial resolutions. New approaches for the estimation and evaluation of SSTs are presented. In addition, an overview of the Climate Change Initiative, with specific applications to SST, is presented. The book provides an excellent overview of the current technology, while also highlighting new technologies and their applications to new missions.
Most freshwater aquatic ecosystems have focused on open-water conditions, during spring, summer, and autumn. Studies in winter during ice-covered conditions are sparse due to the logistic difficulties of sampling during freezing weather and the assumption that these ecosystems are biologically inactive during winter. There is growing evidence, however, that ice conditions can have strong impacts on the flora, fauna, and water quality of freshwater systems, dependent on the severity and duration of the winter season. The magnitude of winter conditions and the duration of the ice-covered period can also set the stage of the biological succession of flora, fauna and water-quality constituents in the subsequent spring and summer seasons (e.g., higher probability of early algal blooms with earlier ice-off dates). Climate change and changes in the type and degree of anthropogenic impacts will also influence the ice regime and hence the ecosystems of northern freshwater systems. This Special Issue provides a venue to report new findings in field-based and modelling research to highlight the importance of the ice regime and ice-induced hydraulic regime of rivers and lakes on their aquatic ecosystems.
This Special Issue highlights novel nanocolloids like magnetic nanoparticles, nanomicelles, nanoliposomes, nanocapsules, and nanoclays, stimulating novel interests and ideas in research groups involved in the development of novel nanotools within the different areas of nanomaterials. The publication of original articles contributes to scientific progress in the area of personalized medicine and further stimulates the entering into clinical praxis of such new nanosystems.
This issue is a continuation of the previous successful Special Issue “Wind Turbines 2013”. Similarly, this issue also focuses on recent advances in the wind energy sector on a wide range of topics, including: wind resource mapping, wind intermittency issues, aerodynamics, foundations, aeroelasticity, wind turbine technologies, control of wind turbines, diagnostics, generator concepts including gearless concepts, power electronic converters, grid interconnection, ride-through operation, protection, wind farm layouts - optimization and control, reliability, operations and maintenance, effects of wind farms on local and global climate, wind power stations, smart-grid and micro-grid related to wind turbine operation.
ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.]
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.