Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
This volume looks at a collection of the latest techniques used to quantify the genome-by-environment-by-management (GxExM) interactions in a variety of model and plant crops. The chapters in this book are organized into five parts. Part One discusses high-throughput plant phenotyping (HTPP) protocols for plants growing under controlled conditions. Part Two present novel algorithms for extracting data from seed images, color analysis from fruits, and other digital readouts from 2D objects. Part Three covers molecular imaging protocols using PET and X-ray approaches, and Part Four presents a collection of HTPP techniques for crops growing under field conditions. The last part focuses on molecular analysis, metabolomics, network analysis, and statistical methods for the quantitative genetic analysis of HTP data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, High-Throughput Plant Phenotyping: Review and Protocols is a valuable resource for both novice and expert researchers looking to learn more about this important field.Chapter 21 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This volume covers the most up-to-date methods and techniques used to further the understanding of chromaffin cell biology and pharmacology. Chapters guide readers through the basic mechanisms that regulate the stimulus-secretion coupling, chromaffin, tumor-derived cell PC-12 , morphology, biochemistry, pharmacology, electrophysiology, and electrochemistry. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Chromaffin Cells: Methods and Protocols aims to be a useful practical guide to researches to help further their study in this field.
This volume provides methods and models for investigating the immunosuppressive subset of CD4+ T-cells, regulatory T-cells (Treg). Chapters guide readers through, basic protocols for analyzing Treg in mice and humans, single-cell analysis for analyzing Treg, and methods for the analysis of Treg in clinical application. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Regulatory T-Cells: Methods and Protocols aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge.
This second edition expands on the previous volume by incorporating state-of-the-art electrophysiological and anatomical methods and their application to the study of several systems of the brain involved in a range of functions. Chapters in this edition cover topics such as the value and difficulty of multi-site recordings using depth or surface electrodes; an assessment of different electrophysiological techniques used in non-human animals and humans; applying single-unit and ensemble recordings to the study of temporal dynamics in cognition; approaches to electroencephalography (EEG) recordings applied to mouse research; recordings of the nucleus reuniens of the ventral midline thalamus; and a comprehensive account of intracranial electroencephalography performed in patients with drug resistant epilepsy. In the Neuromethods series style, chapters include the type of detail and key advice from specialists needed to obtain successful results in your laboratory. Comprehensive and thorough, Electrophysiological Recording Techniques, Second Edition is a valuable resource for researchers and clinicians to help them utilize the principles and research designs described herein in their programs.
This thorough volume explores protocols of proteome- and metabolome-wide strategies for the identification of protein-small molecule complexes in different organisms, in order to shed light on these important regulatory interactions. Experimental and computational strategies to characterize protein-metabolite interactions are discussed, and recent advances in enabling technologies are featured as well. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice to ensure success in future research. Authoritative and practical, Cell-Wide Identification of Metabolite-Protein Interactions will aid researchers seeking a better understanding of the mechanisms of signal transduction occurring in the cell and assessing the effect of complex formation on cell physiology.
This volume covers the latest techniques that study the synthesis of melatonin, its receptor function, and its effects at the cellular and systemic level. The chapters are organized into three parts. Part One describes methods for the detection of melatonin and its biological derivatives in various biological samples, the manipulation of melatonin synthesis by the pineal gland in animals, and the principal source of melatonin in mammals. Part Two explores methods to measure the biological effects and consequences of melatonin binding to high-affinity G protein-coupled receptors. Part Three describes methods to measure the physiological effects that are regulated by melatonin in animals, particularly in rodent models. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Cutting-edge and thorough, Melatonin: Methods and Protocols is a valuable resource for any researcher interested in investigating melatonin, from its production to its mechanisms of action and systemic effects.
This detailed volume presents a series of protocols that are representative of recent developments and improvements in induced pluripotent stem cells (iPS cells) and corresponding human disease models. Reflecting the latest technology for generating induced pluripotent stem cells (iPS cells) and their initial characterization, the book explores techniques invaluable both for studies of disease-specific cell types and for their potential applications in regenerative medicine. Written for the highly successful Methods in Molecular Biology series, chapters include introduction to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, as well as tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Induced Pluripotent Stem Cells and Human Disease: Methods and Protocols serves as a vital guide that is valuable for not only experts but also novices in the stem cell field.
This volume explores the latest techniques used to study neurodevelopmental diseases (NDD) that range from molecular aspects to integrated research approaches and brain imaging in living rodents. Chapters in this book cover topics such as protocols to deliver shRNA in vitro and in vivo using lentiviral particles to knock-down specific protein expression; experimental procedures to use recombinant fluorescent probes to visualize endogenous proteins at the mammalian synapse; CRISPR/Cas9 toolkit to assess either gain- or loss-of-gene function in brain organoids; detailed protocols to use in vivo manipulations to correct the behavioral phenotypes in cognitive disorder mouse lines; and experimental approaches to genetically engineer macaque models of NDDs and investigate how genetic predisposition may cause neural and functional alterations. In the Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Cutting-edge and practical, Translational Research Methods in Neurodevelopmental Disorders is a valuable resource for all researchers who want to learn more about this important and developing field.
This volume discusses methods used in the fields of molecular and cellular biology for detecting and studying cell death, especially in cancer and cancer therapy. Chapters in this book cover topics such as non-destructive, real-time Annexin V apoptosis assay; assessment of the immune response to tumor cell apoptosis and efferocytosis; mass cytometry assessment of cell phenotypes and signaling states in human whole blood; cell cycle analysis of ER stress and autophagy; and simultaneous detection of inflammasome activation and membrane damage during pyroptosis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Cutting-edge and practical, Apoptosis and Cancer: Methods and Protocols is a valuable resource and practical guide for both novice and expert researchers looking into the "e;meaning of death."e;
This volume discusses the latest techniques used to identify cancer drug resistance determinants at the molecular, cellular, and functional levels. Chapters in this book cover up-to-date topics including tumor-microenvironment cell co-culture methods and microfluidics systems; workflows for functional assessment of drug resistance in vitro and in vivo; quantitative techniques for identifying quiescent blood-flow circulating cells; and single-cell characterization methods, such as mass cytometry. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Cutting-edge and practical, Cancer Drug Resistance: Methods and Protocols is a valuable resource for all scientists and researchers who are looking to learn more about the latest developments in understanding and overcoming anticancer drug resistance.
This volume provides methods on procedures for assessing the biosafety aspects of probiotics. Chapters are divided into five parts detailing in vitro biosafety assessment, biogenic amine production, D-lactic acid production, toxin production, production of various enzymes, determination of toxicity, mutagenicity, virulence genes, capsule formation, hemolytic activity, DNAse activity, bile salt deconjugation, antibiotic resistance, antibiotic resistance gene transfer, mucin degradation, platelet aggregation, and in vivo biosafety assessment of probiotics including determination of infectivity, reproductive and developmental toxicity, and evaluation of immunological parameters in animal models.Authoritative and cutting-edge, Biosafety Assessment of Probiotic Potential aims to be a foundation for future studies and to be a source of inspiration for new investigations in the field.
This detailed volume explores a variety of cutting-edge techniques used to interrogate spatial genome organization. Beginning with a section covering the vital chromosome conformation capture (3C) technique, this collection continues with chapters on targeted Hi-C approaches, sequencing-based approaches to assess nuclear environment, as well as single-cell technologies to better characterize the heterogeneity and dynamics of nuclear architectures and approaches to visualize them by microscopy. Finally, in order to be able to ask functional questions about the role of spatial chromatin organization in genomic control, the last section provides methods for acute manipulations of chromatin architecture. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Spatial Genome Organization: Methods and Protocols is an ideal resource for researchers searching for the best techniques to address their own specific research questions.
This volume provides updated protocols for chemical protein synthesis. Chapters guide readers through development methods, strategies, and applications of protein chemical synthesis. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Chemical Protein Synthesis aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge.
This volume provides an overview of methods for plant species, mainly species with high economic value, to achieve in vitro propagation through somatic embryogenesis. Chapters guide readers through somatic embryogenesis protocols, somatic embryos in plants, and new methodologies that are used out to solve in vitro recalcitrance of many species to this morphogenetic route. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Somatic Embryogenesis: Methods and Protocols aims to guide future researcher to achieve success in obtaining and regenerating somatic embryos. Chapter 6 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This volume presents a collection of protocols to study effector-triggered immunity (ETI) in both plants and animals from eminent groups in the field. The chapters in this book cover topics such as genetic manipulation of plant and animal pathogens, host cells, and the analysis of key host responses; and techniques used for the analysis of inflammasome activation, cell death pathways, and mitochondria damage in response to pathogens. All of these topics cover a broad spectrum of immunological, biochemical, cell biological, and structural biology approaches to examine ETI. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Cutting-edge and practical, Effector-Triggered Immunity: Methods and Protocols is a valuable resource for both expert and novice researchers who are interested in learning more about the important and developing field of ETI.
This fully updated volume explores improved and extended protocols for embryonic stem cell (ESC) research, provided with the most direct and informative methodologies currently available. The book examines how these models for cell lineage and differentiation studies have continued to mature into a critical research workhorse. Written for the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Embryonic Stem Cell Protocols, Fourth Edition serves as an ideal resource for researching mining the depths of the ESC field.
This volume provides detailed protocols for the identification and understanding of vasculogenic mimicry process in vitro and in vivo, in addition to protocols for microscopy and histology. Chapters guide readers through different materials, commercial and homemade scaffolds, Matrigel, cancer spheroids, 3D tissue constructs, vasculogenic processes, and mathematical model building. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Vasculogenic Mimicry: Methods and Protocols aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge.
This second edition volume expands on the previous edition with new and updated chapters on the latest developments in the study of yeast within the biotechnology field. The chapters in this book cover topics such as transformation protocols for genetic engineering of Saccaromyces cerevisiae and Komagataella spp.; an overview of selection markers, promoters, and strains used for metabolic engineering of S. cerevisiae, P. pastoris, and Z. bailii; the use of yeast in CRISPR/Cas9 technology; tools to study metabolic pathway in Yarrowia lypolitica; and a discussion on the "e;universal expression system"e; that is applied in a broad spectrum of fungal species. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Cutting-edge and authoritative, Yeast Metabolic Engineering: Methods and Protocols, Second Edition is a valuable resource for researchers and scientists interested in learning more about this important and developing field.
This detailed volume explores the application of multiplex biomarker methods in the critical area of COVID-19 research through state-of-the-art technologies in the fields of genomics, proteomics, transcriptomics, metabolomics, and imaging. The book features a series of protocols from labs across the globe employing multiplex molecular approaches, which can be applied to accelerate progress in the research of SARS-CoV-2 and other infectious illnesses. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and essential, Multiplex Biomarker Techniques: Methods and Applications for COVID-19 Disease Diagnosis and Risk Stratification serves as a vital resource for researchers in the areas of virology, metabolic diseases, respiratory disorders, as well as to clinical scientists, physicians, pharmacologists, and the healthcare services.
This detailed volume explores a wide variety of techniques involving optical tweezers, a technology that has become increasingly more accessible to a broad range of researchers. Beginning with recent technical advances, the book continues by covering the application of optical tweezers to study DNA-protein interactions and DNA motors, protocols to perform protein (un)folding experiments, the application of optical tweezers to study actin- and microtubule-associated motor proteins, and well as protocols for investigating the function and mechanical properties of microtubules and intermediate filaments, and more. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Optical Tweezers: Methods and Protocols, Second Edition serves as an ideal resource for expanding the accessibility and use of optical traps by scientists of diverse disciplines.
This detailed volume presents a series of methods exploring membrane trafficking research, ranging from genetics and high-resolution imaging to in vitro biochemical and biophysical assays. Covering virtually all the major trafficking branches, the book delves into the exocytic pathway, which focuses on cargo transport from the ER to the Golgi, through the Golgi cisternae, and to the plasma membrane and the extracellular space; the endocytic pathway, which includes cargo endocytosis, endosomal recycling, and lysosomal degradation; as well as emerging topics beyond the conventional exocytic and endocytic pathways. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Membrane Trafficking: Methods and Protocols provides techniques with broad applications as an ideal guide for junior researchers new to membrane trafficking as well as established membrane biologists seeking to expand their research programs.
This detailed edition reflects the significant new findings in the components of permeability barriers and how they work in different tissues with a collection of cutting-edge techniques. Chapters explore the formation, maintenance, regulation, and dynamics of permeability barriers in an effort to push the boundaries of the field. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Permeability Barrier: Methods and Protocols, Second Edition serves as an invaluable guide for both experts but novices in the stem cell field and other related areas of research.
This volume provides researchers with protocols that help them investigate known or putative O2 sensing proteins and pathways. The chapters in this book discuss techniques ranging from anaerobic redox midpoint measurement to approaches to control expression of globin genes, which provide detailed methods for researchers interested in expanding their knowledge of O2 sensing systems. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Authoritative and comprehensive, Oxygen Sensing: Methods and Protocols is a valuable resource to a wide audience, ranging from microbiologists and cell biologists, to protein biochemists.
This volume provides methods on the study of the systems of the brain. Chapters are divided into four parts covering; discriminative touch, proprioception and kinaesthesis, affective touch, individual differences due to atypical development, ageing, illusions and sensory substitution, microneurography, electrophysiology, brain imaging, and brain stimulation. In Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your research center and clinical investigation. Thorough and comprehensive, Somatosensory Research Methods aims to be comprehensive guide for researchers.
This volume details protocols on animal cloning by Somatic cell nuclear transfer for basic research and biotechnological applications. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and methods, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Somatic Cell Nuclear Transfer Technology aims to be comprehensive guide for researchers.
This volume explores the latest collection of cell models that are used in preclinical cancer research, and covers both two-dimensional and three-dimensional culturing techniques. The chapters in this book are divided into two parts. Part One discusses two-dimensional cancer cell culture, cell models at the Air-Liquid Interface, and the latest advancements in three-dimensional complex spheroid models and dedicated disease animal models. Part Two contains technical chapters that illustrate step-by-step methodologies for specific cancer cell culture methods. The methods discussed range from the generation of isogenic cancer cell lines, the use of serum-free growth conditions, and three-dimensional cell cultures and their specific assays for the efficacy assessment of new anticancer therapies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Cutting-edge and comprehensive, Cancer Cell Culture: Methods and Protocols is a valuable tool to help researchers involved in this important field to further improve or advance their models for cancer research.
This fully updated volume assembles a comprehensive collection of methods, techniques, and strategies to investigate the molecular and cellular biology of peroxisomes in different organisms. Peroxisome research is on the rise, as novel functions and proteins of this dynamic organelle are still being discovered through studies in model systems including humans, mice, flies, plants, fungi, and yeast, and this progress is reflected in the chapters included in this collection. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Peroxisomes: Methods and Protocols, Second Edition serves as an ideal guide for researchers working on peroxisome- and organelle-based research questions.
This volume provides conceptual strategies and methodological know-how over a wide range of stress situations that can be used as stepping stones to unravel the intricacies of abiotic stress signaling networks in plants. Chapters guide readers through achievements and challenges in the field and through up-to-date protocols covering identification of novel processes, validation of hypothetical mechanisms, and further characterization of currently-known pathways. Written in the format of the highly successful Methods in Molecular Biology series, wet-lab chapters include an introduction to the topic, lists necessary materials and methods, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Plant Abiotic Stress Signaling aims to be a comprehensive and innovative guide for students and researchers seeking to understand plant molecular mechanisms at the interface with environmental constraints and climate change.
This volume explores techniques used to study and understand the latest research on pyroptosis. The chapters in this book cover topics such as experimental methods to induce pyroptosis via inflammasomes; approaches to identifying inflammasome activation in humans; ways to induce and detect pore formation; and techniques to evaluate cellular outcomes of pyroptotic cell death. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Cutting-edge and thorough, Pyroptosis: Methods and Protocols is a valuable tool for researchers who want to expand their knowledge of this developing field. It will be especially beneficial for those working in the fields of immunology, cancer biology, microbiology, and cell biology.
This volume looks at the latest technologies and methods--combined with new genetic tools available in animal models--used in this constantly evolving field. The chapters in this book are organized into three sections: Section one covers muscle stem cells and progenitor cells; Section Two discusses animal models for muscle stem cells and regeneration; and Section Three explores bioinformatics and imaging analysis for muscle stem cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Cutting-edge and comprehensive, Skeletal Muscle Stem Cells and Regeneration: Methods and Protocols is a valuable tool for all researchers looking to expand their knowledge on skeletal muscle growth, repair, degeneration, aging, and regenerative medicine.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.