Join thousands of book lovers
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.You can, at any time, unsubscribe from our newsletters.
How does homebanking work? How are board games developed? How reliable can wind energy get? How do we discover forged paintings? Do smart girls stay single? How dangerous can a bioterrorist get? In all these questions (and many others), mathematics plays a crucial role in the search for an answer.¿This book tells the story behind twenty of these questions. This is explicitly not a mathematics book, but a book about the crucial role that mathematics plays in devising the creative solutions the world needs. The questions are divided into three categories: mathematics in everyday life, mathematics for the workplace, and mathematics for tomorrow's society. The themes illustrate not only the incredibly broad applicability of mathematics in the world around us, but also the great diversity of useful mathematical techniques.
This volume explores diverse protocols for peptide conjugation, and provides thoroughly tested and scientifically valid techniques that allow researchers and scientists to prepare, purify, characterize, and use peptide conjugation methods for chemical, biochemical, and biological studies. Some of the topics discussed in this book are gold nanoparticles, proteins, pegylated lipids, and vitamins. Chapters also cover enzymatic ligation using sortase A, construction of a phage-displayed cyclic-peptide library, quantum dot-peptide conjugates, and preparation of lipopeptides by CLipPA chemistry. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Peptide Conjugation: Methodsand Protocols is a valuable resource for experienced researches and undergraduate students alike who are interested in learning more about this exciting and developing field.
This essential volume explores a variety of tools and protocols of structure-based (homology modeling, molecular docking, molecular dynamics, protein-protein interaction network) and ligand-based (pharmacophore mapping, quantitative structure-activity relationships or QSARs) drug design for ranking and prioritization of candidate molecules in search of effective treatment strategy against coronaviruses. Beginning with an introductory section that discusses coronavirus interactions with humanity and COVID-19 in particular, the book then continues with sections on tools and methodologies, literature reports and case studies, as well as online tools and databases that can be used for computational anti-coronavirus drug research. Written for the Methods in Pharmacology and Toxicology series, chapters include the kind of practical detail and implementation advice that ensures high quality results in the lab. Comprehensive and timely, In Silico Modeling ofDrugs Against Coronaviruses: Computational Tools and Protocols is an ideal reference for researchers working on the development of novel anti-coronavirus drugs for SARS-CoV-2 and for coronaviruses that will likely appear in the future.
This volume provides an overview of the current successes as well as pitfalls and caveats that are hindering the design of membrane proteins. Divided into six parts, chapters detail membrane transporter, FoldX force field, protein stability, G-Protein Coupled Receptors (GPCR) structures, transmembrane helices, membrane molecular dynamics (MD) simulations, pH-dependent protonation states, membrane permeability, and passive transport. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Design of Membrane Proteins aims to ensure successful results in the further study of this vital field.Chapter 4 is available open access under a Creative CommonsAttribution 4.0 International License via link.springer.com.
Sign up to our newsletter and receive discounts and inspiration for your next reading experience.
By signing up, you agree to our Privacy Policy.