We a good story
Quick delivery in the UK

4.0.1 Cùng xây d¿ng Model Machine Learning v¿i Bêta và Bít

About 4.0.1 Cùng xây d¿ng Model Machine Learning v¿i Bêta và Bít

Thôi ¿¿¿c, t¿t c¿ các model d¿ ¿oán (predictive models) ¿¿u trông có v¿ ¿n, nh¿ng làm cách nào chúng ta có th¿ xây d¿ng các model m¿t cách ¿áng tin c¿y h¿n? ¿ây chính là câu h¿i tôi th¿¿ng ¿¿¿c h¿i b¿i các nhà khoa h¿c d¿ li¿u ¿ nh¿ng m¿c ¿¿ kinh nghi¿m khác nhau. Câu h¿i có v¿ ¿¿n gi¿n, nh¿ng ¿¿ng th¿i c¿ng r¿t thách th¿c b¿i vì có r¿t nhi¿u lüng quan ¿i¿m và m¿i quan tâm khác nhau t¿ nh¿ng ng¿¿i liên quan. Nh¿ng ng¿¿i xây d¿ng model th¿¿ng t¿p trung vào vi¿c hün luy¿n model (training model) m¿t cách t¿ ¿¿ng, ki¿m soát hi¿u n¿ng, debug và nh¿ng höt ¿¿ng duy trì c¿ h¿ th¿ng t¿ d¿ li¿u ¿¿n t¿i ¿u hi¿u n¿ng ph¿n c¿ng và c¿i ti¿n model (MLOps). Ng¿¿i s¿ d¿ng model ph¿n nhi¿u th¿¿ng h¿ng thú h¿n v¿i nh¿ng câu h¿i v¿ t¿ ¿âu mà model cho ra k¿t qü d¿ ¿oán nh¿ v¿y (explainability) höc nh¿ng ¿òi h¿i nh¿t ¿¿nh ¿¿ hi¿u ¿¿¿c bên trong model höt ¿¿ng nh¿ th¿ nào (transparency) và m¿c ¿¿ "phòng th¿" (security) c¿a mô hình tr¿¿c nh¿ng t¿n công, ví d¿ nh¿ t¿ d¿ li¿u kém ch¿t l¿¿ng. V¿ phía xã h¿i, nh¿ng m¿i quan tâm th¿¿ng là model có công b¿ng hay thiên v¿ (fairness hay bias), ví d¿ mô hình có ¿u tiên cho m¿t nhóm ng¿¿i nh¿ trong xã h¿i, höc thiên v¿ v¿ gi¿i tính không; hay k¿t qü d¿ ¿oán t¿ model có phù h¿p chün m¿c ¿¿o ¿¿c hay không (ethics). Quy¿n sách này t¿ng hòa t¿t c¿ các góc nhìn trên. B¿n ¿¿c s¿ tìm th¿y nh¿ng k¿ thüt machine learning ch¿n l¿c và c¿ nh¿ng cách hi¿u tr¿c quan ng¿n g¿n. Các k¿ thüt ¿¿u ¿¿¿c g¿n li¿n v¿i các ¿ön code trong ngôn ng¿ R. B¿n ¿¿c s¿ cùng hai nhân v¿t Bêta và Bít ¿i d¿o vào khu v¿¿n, không ph¿i c¿a kì hoa d¿ th¿o, mà là c¿a các model ML thú v¿. Trong khu v¿¿n có ng¿n ¿èn ¿¿¿c th¿p lên b¿i nh¿ng góc nhìn th¿u ¿áo v¿ model t¿ kinh nghi¿m th¿c t¿. Cüc bàn lün gi¿a Bêta và Bít c¿ng chính là nh¿ng gì di¿n ra trong th¿c t¿ mà các nhà khoa h¿c d¿ li¿u th¿¿ng g¿p, có nên th¿ m¿t model khác không, höc có nên th¿ m¿t k¿ thüt khác ¿¿ khai phá d¿ li¿u, höc m¿t t¿p d¿ li¿u khác ch¿ng? --- và ti t¿ câu h¿i nh¿: làm cách nào ¿¿ so sánh gi¿a nh¿ng model höc làm th¿ nào ¿¿ ki¿m tra hi¿u n¿ng. Quá trình phát tri¿n model ¿òi h¿i s¿ c¿n th¿n và trách nhi¿m, nh¿ng r¿t thú v¿. Thông th¿¿ng, nhi¿u quy¿n sách ch¿ chú tâm vào m¿t ki¿n th¿c mà quên m¿t ¿i ni¿m vui và s¿ thú v¿. Nh¿ng, hi v¿ng ¿ quy¿n sách này, chúng ta s¿ có ¿¿¿c c¿ hai.

Show more
  • Language:
  • Vietnamese
  • ISBN:
  • 9788365291165
  • Binding:
  • Paperback
  • Pages:
  • 58
  • Published:
  • April 19, 2022
  • Dimensions:
  • 210x4x297 mm.
  • Weight:
  • 252 g.
Delivery: 1-2 weeks
Expected delivery: December 6, 2024

Description of 4.0.1 Cùng xây d¿ng Model Machine Learning v¿i Bêta và Bít

Thôi ¿¿¿c, t¿t c¿ các model d¿ ¿oán (predictive models) ¿¿u trông có v¿ ¿n, nh¿ng làm cách nào chúng ta có th¿ xây d¿ng các model m¿t cách ¿áng tin c¿y h¿n? ¿ây chính là câu h¿i tôi th¿¿ng ¿¿¿c h¿i b¿i các nhà khoa h¿c d¿ li¿u ¿ nh¿ng m¿c ¿¿ kinh nghi¿m khác nhau. Câu h¿i có v¿ ¿¿n gi¿n, nh¿ng ¿¿ng th¿i c¿ng r¿t thách th¿c b¿i vì có r¿t nhi¿u lüng quan ¿i¿m và m¿i quan tâm khác nhau t¿ nh¿ng ng¿¿i liên quan.
Nh¿ng ng¿¿i xây d¿ng model th¿¿ng t¿p trung vào vi¿c hün luy¿n model (training model) m¿t cách t¿ ¿¿ng, ki¿m soát hi¿u n¿ng, debug và nh¿ng höt ¿¿ng duy trì c¿ h¿ th¿ng t¿ d¿ li¿u ¿¿n t¿i ¿u hi¿u n¿ng ph¿n c¿ng và c¿i ti¿n model (MLOps). Ng¿¿i s¿ d¿ng model ph¿n nhi¿u th¿¿ng h¿ng thú h¿n v¿i nh¿ng câu h¿i v¿ t¿ ¿âu mà model cho ra k¿t qü d¿ ¿oán nh¿ v¿y (explainability) höc nh¿ng ¿òi h¿i nh¿t ¿¿nh ¿¿ hi¿u ¿¿¿c bên trong model höt ¿¿ng nh¿ th¿ nào (transparency) và m¿c ¿¿ "phòng th¿" (security) c¿a mô hình tr¿¿c nh¿ng t¿n công, ví d¿ nh¿ t¿ d¿ li¿u kém ch¿t l¿¿ng. V¿ phía xã h¿i, nh¿ng m¿i quan tâm th¿¿ng là model có công b¿ng hay thiên v¿ (fairness hay bias), ví d¿ mô hình có ¿u tiên cho m¿t nhóm ng¿¿i nh¿ trong xã h¿i, höc thiên v¿ v¿ gi¿i tính không; hay k¿t qü d¿ ¿oán t¿ model có phù h¿p chün m¿c ¿¿o ¿¿c hay không (ethics).
Quy¿n sách này t¿ng hòa t¿t c¿ các góc nhìn trên. B¿n ¿¿c s¿ tìm th¿y nh¿ng k¿ thüt machine learning ch¿n l¿c và c¿ nh¿ng cách hi¿u tr¿c quan ng¿n g¿n. Các k¿ thüt ¿¿u ¿¿¿c g¿n li¿n v¿i các ¿ön code trong ngôn ng¿ R. B¿n ¿¿c s¿ cùng hai nhân v¿t Bêta và Bít ¿i d¿o vào khu v¿¿n, không ph¿i c¿a kì hoa d¿ th¿o, mà là c¿a các model ML thú v¿. Trong khu v¿¿n có ng¿n ¿èn ¿¿¿c th¿p lên b¿i nh¿ng góc nhìn th¿u ¿áo v¿ model t¿ kinh nghi¿m th¿c t¿.
Cüc bàn lün gi¿a Bêta và Bít c¿ng chính là nh¿ng gì di¿n ra trong th¿c t¿ mà các nhà khoa h¿c d¿ li¿u th¿¿ng g¿p, có nên th¿ m¿t model khác không, höc có nên th¿ m¿t k¿ thüt khác ¿¿ khai phá d¿ li¿u, höc m¿t t¿p d¿ li¿u khác ch¿ng? --- và ti t¿ câu h¿i nh¿: làm cách nào ¿¿ so sánh gi¿a nh¿ng model höc làm th¿ nào ¿¿ ki¿m tra hi¿u n¿ng.
Quá trình phát tri¿n model ¿òi h¿i s¿ c¿n th¿n và trách nhi¿m, nh¿ng r¿t thú v¿. Thông th¿¿ng, nhi¿u quy¿n sách ch¿ chú tâm vào m¿t ki¿n th¿c mà quên m¿t ¿i ni¿m vui và s¿ thú v¿. Nh¿ng, hi v¿ng ¿ quy¿n sách này, chúng ta s¿ có ¿¿¿c c¿ hai.

User ratings of 4.0.1 Cùng xây d¿ng Model Machine Learning v¿i Bêta và Bít



Find similar books
The book 4.0.1 Cùng xây d¿ng Model Machine Learning v¿i Bêta và Bít can be found in the following categories:

Join thousands of book lovers

Sign up to our newsletter and receive discounts and inspiration for your next reading experience.